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Abstract

This study looks at the relationships between different methods of classifier combination and different measures of diversity. We

considered 10 combination methods and 10 measures of diversity on two benchmark data sets. The relationship was sought on

ensembles of three classifiers built on all possible partitions of the respective feature sets into subsets of pre-specified sizes. The only

positive finding was that the Double-Fault measure of diversity and the measure of difficulty both showed reasonable correlation

with Majority Vote and Naive Bayes combinations. Since both these measures have an indirect connection to the ensemble accuracy,

this result was not unexpected. However, our experiments did not detect a consistent relationship between the other measures of

diversity and the 10 combination methods. � 2002 Published by Elsevier Science B.V.
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1. Introduction

Combining classifiers is an established research area
shared between statistical pattern recognition and ma-
chine learning. It is variously known as committees of
learners, mixtures of experts, classifier ensembles, mul-
tiple classifier systems, consensus theory, etc. If we have
many different classifiers, it is sensible to consider using
them in a combination in the hope of increasing the
overall accuracy [1]. It is intuitively accepted that clas-
sifiers to be combined should be diverse. If they were
identical, we could not gain any improvement by com-
bining them. Therefore, diversity (negative dependence,
independence, orthogonality, complementarity) among
the team has been recognised as a key issue [2,3]. The-
oretically, a group of independent classifiers improve
upon the single best classifier when majority vote com-
bination is used. A dependent set of classifiers may be
either better than the independent set or worse than the
single worst member of the team, so diversity can be
both beneficial or harmful [4,5].
Several techniques exist which aim to improve the

performance of classifier ensembles by manipulating the

data set on which classifiers are trained. These include
Bagging, Boosting, and Arcing [6,7] which can be per-
ceived as guidelines in constructing classifier ensembles.
The superiority of these ensemble-building techniques
over a simple pooling of independently trained classifiers
is attributed to boosting the classification margins [9]
and reducing the variance of the error [6]. On the other
hand, it has been found that Boosting can be paralysed
[10], i.e., no further improvement is achieved when
adding new classifiers to the team. It may be that these
methods are in some way altering the diversity of the
classifiers in the ensemble and this is the key to their
success (or failure in some cases). We are interested in
whether there is any connection between combination
accuracy and diversity in the ensemble.
The proven relationship to date is the result due to

Tumer and Ghosh [11,12] who showed that under cer-
tain assumptions, the averaging combination method
produces accuracy which is related to the correlation
between the classifier outputs. They extended this result
to show similar relationship for combination by order
statistics: minimum, maximum, mean [13]. In a previous
study, we proved that there is a functional relationship
between the Q statistic and the upper and the lower
limits of the majority vote accuracy [14]. However, there
is no theoretical proof of any relationship in the general
case. Some authors have used a measure of correlation
of the outputs to enforce diversity in the ensemble
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during training of the component classifiers. The nega-
tive correlation training of neural networks was devel-
oped [15–18] which showed promising practical results
for both regression and classification. Again, the average
combination method was used. Ensembles built through
random subspace method and aggregated using majority
vote are reported to correlate well with a measure of
diversity based on entropy [3,19].
In this study, we examine several widely used com-

bination methods and several diversity measures to try
to establish whether or not there exists a relationship

• amongst the 10 combination methods;
• amongst the 10 diversity measures;
• between each of the 10 combination methods and
each of the 10 diversity measures.

We first introduce 10 combination methods (Section 2)
and 10 measures of diversity (Section 3), and then study
their relationship experimentally (Sections 5 and 6).
Finally we present our conclusions and ideas for future
study (Section 7).

2. Combination methods

Let D ¼ fD1;D2; . . . ;DLg be a set of classifiers and
X ¼ fx1; . . . ;xcg be a set of class labels. Each classifier
gets as its input a feature vector x 2 Rn. The classifier
output is a c-dimensional vector DiðxÞ ¼ ½di;1ðxÞ; . . . ;
di;cðxÞ�T, where di;jðxÞ is the degree of ‘‘support’’ given by
classifier Di to the hypothesis that x comes from class xj,
j ¼ 1; . . . ; c. Without loss of generality we can restrict
di;jðxÞ within the interval ½0; 1�, i ¼ 1; . . . ; L, j ¼ 1; . . . ; c,
and call the classifier outputs ‘‘soft labels’’. Most often
di;jðxÞ is an estimate of the posterior probability
P ðxi jxÞ.
Combining classifiers means we combine the L clas-

sifier outputs D1ðxÞ; . . . ;DLðxÞ to get a soft label for x,
denoted DðxÞ ¼ ½l1ðxÞ; . . . ; lcðxÞ�

T:
If a crisp class label of x is needed, we can use the

maximum membership rule: assign x to class xs iff,

di;sðxÞP di;jðxÞ8j ¼ 1; . . . ; c for individual crisp labels
ð1Þ

lsðxÞP ltðxÞ; 8t ¼ 1; . . . ; c for the final crisp label:
ð2Þ

Ties are resolved arbitrarily. The minimum-error clas-
sifier is recovered from (2) when liðxÞ ¼ Pðxi jxÞ.
There are many different combination methods

available. Here we consider nine combination methods
and the Oracle (a favourable abstraction used as an
upper limit for the performance of the other methods).

2.1. Majority vote (MAJ), Maximum (MAX),
Minimum (MIN), Average (AVR), Product (PRO)

Once the classifiers in the ensemble are trained, these
combination methods do not require any further train-
ing. For the majority vote combination, the class label
assigned to x is the one that is most represented in the
set of L crisp class labels obtained from D1ðxÞ; . . . ;
DLðxÞ. For the remaining simple combination methods

ljðxÞ ¼ Oðd1;jðxÞ; . . . ; dL;jðxÞÞ; j ¼ 1; . . . ; c; ð3Þ

where O is the respective operation (maximum, mini-
mum, average or product) and the class xj with maxi-
mum lj is the assigned class. For the case of two classes,
it can be proven that maximum is always equivalent to
minimum (Appendix A, Proposition 1). Table 1 shows
an example of how these simple aggregation methods
work.

2.2. Naive Bayes (NB)

Consider the crisp class labels obtained from
D1ðxÞ; . . . ;DLðxÞ by (1), so in this case DiðxÞ 2 X,
i ¼ 1; . . . ; L. This scheme assumes that the classifiers are
mutually independent; this is the reason we use the name
‘‘naive’’. Let s1; . . . ; sL be the crisp class labels assigned
to x by classifiers D1; . . . ;DL, respectively. The inde-
pendence assumption leads to

ljðxÞ /
YL
i¼1
P̂P ðxj jDiðxÞ ¼ siÞ; ð4Þ

where P̂P ðxj jDiðxÞ ¼ siÞ are probability estimates calcu-
lated from the data.

P̂P ðxj jDiðxÞ ¼ siÞ
¼ ðnumber of objects labelled si by Di

whose true label is xjÞ
ðnumber of objects labelled si by DiÞ:=

Table 1

Example showing how the simple aggregation methods work

Classi-

fier

Support for

x1

Support for

x2

Crisp

decision

D1 0.8 0.2 x1
D2 0.4 0.6 x2
D3 0.3 0.7 x2
D4 0.6 0.4 x1
D5 0.3 0.7 x2

MAJ x2
MIN 0.3 0.2 x1
MAX 0.8 0.7 x1
AVR 0.48 0.52 x2
PRO 0.01728 0.2352 x2
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The following example illustrates the NB combina-
tion method. Let L ¼ 3 and c ¼ 2. Suppose that the
confusion matrices of the three classifiers, calculated on
a data set Z with 100 objects are as shown in Table 2.
Let the output of the three classifiers for some x 2 Rn

be ½s1; s2; s3� ¼ ½x2;x1;x2�. Majority vote would label x
in x2. However, the support for that class label is weak,
albeit hypothesised by two of the three classifiers. For
the Naive Bayes combination

P̂P ðx1 j s1 ¼ x2Þ ¼
12

66
;

P̂P ðx2 j s1 ¼ x2Þ ¼
54

66
;

P̂P ðx1 j s2 ¼ x1Þ ¼
68

73
;

P̂P ðx2 j s2 ¼ x1Þ ¼
5

73
;

P̂P ðx1 j s3 ¼ x2Þ ¼
16

34
;

P̂P ðx2 j s3 ¼ x2Þ ¼
18

34
;

l1ðxÞ /
12

66
� 68
73

� 16
34

 0:08 > l2ðxÞ

/ 54
66

� 5
73

� 18
34

 0:03:

ð5Þ

Accordingly, class x1 will be assigned.

2.3. Behavior–knowledge space (BKS)

BKS is in fact a fancy name for the multinomial
combination. Let again s ¼ ðs1; . . . ; sLÞ 2 XL be the crisp
class labels assigned to x by classifiers D1; . . . ;DL, re-
spectively. We can consider s to be an L-dimensional
random variable and estimate liðxÞ ¼ P̂P ðxi j sÞ. To do
so, every possible combination of class labels (a value of
s) is regarded as an index to a cell in a look-up table
(BKS table) [20]. The table is designed using a labelled
data set Z. Each zj 2 Z is placed in the cell indexed by
D1ðzjÞ; . . . ;DLðzjÞ: The number of elements in each cell
are tallied and the most representative class label is se-
lected for this cell. Ties are resolved arbitrarily and the
empty cells are labelled appropriately (e.g., at random or
by majority, if applicable). After the table has been de-
signed, the BKS method labels an x 2 Rn to the class of
the cell indexed by D1ðxÞ; . . . ;DLðxÞ.

For the example discussed in the previous sections,
assume again that D1;D2 and D3 produce output ðs1; s2;
s3Þ ¼ ðx2;x1;x2Þ. Suppose there have been 22 objects in
Z for which this combination of labels occurred; 14
having label x1, and 8 x2. Hence the table cell indexed
by ðx2;x1;x2Þ will be labelled x1 no matter that the
majority of the classifiers suggest otherwise.

2.4. Wernecke’s method (WER)

The model is similar to the BKS. The difference is that
in constructing the table, Wernecke [21] considers the
95% confidence intervals of the frequencies in each cell.
If there is overlap between the intervals, the ‘‘least
wrong’’ classifier among the L members of the team is
identified and authorised to label x. For this, L estimates
of the probability P ðerror and DiðxÞ ¼ siÞ are calcu-
lated. Then the classifier with the smallest probability is
nominated for labelling the cell. For an x 2 Rn, the cell
is identified by the labels assigned by D1; . . . ;DL and
then either the cell label is recovered or the label of the
nominated classifier is taken as the label of x.
To continue the example illustrating BKS combina-

tion method, we calculate the 95% confidence intervals
using Chebyshev’s inequality (e.g., see [8]). The CI for
x1 is ½4:49; 23:59�, and for x2, ½�1:59; 17:59�. Since the
CI are overlapping, estimates of P ðerror and DiðxÞ ¼ siÞ
have to be obtained. Using the data in Table 2,

P̂P ðerror and D1ðxÞ ¼ x2Þ ¼ P̂P ðx1 j s1 ¼ x2ÞP̂Pðs1 ¼ x2Þ

¼ 12
66

� 66
100

¼ 12

100
;

P̂P ðerror and D2ðxÞ ¼ x1Þ ¼ P̂P ðx2 j s2 ¼ x1ÞP̂Pðs2 ¼ x1Þ

¼ 5

73
� 73
100

¼ 5

100
;

P̂P ðerror and D3ðxÞ ¼ x2Þ ¼ P̂P ðx1 j s3 ¼ x2ÞP̂Pðs3 ¼ x2Þ

¼ 16
34

� 34
100

¼ 16

100
:

As P̂P ðerror and D2ðxÞ ¼ x1Þ is the smallest of the
three, classifier D2 is authorised to label x, and thus the
assigned class is x1.

2.5. Decision templates (DT)

The classifier outputs can be conveniently organised
in a decision profile as the following matrix [22]

DP ðxÞ ¼

d1;1ðxÞ . . . d1;jðxÞ . . . d1;cðxÞ
. . .
di;1ðxÞ . . . di;jðxÞ . . . di;cðxÞ
. . .
dL;1ðxÞ . . . dL;jðxÞ . . . dL;cðxÞ

2
66664

3
77775: ð6Þ

Using decision templates (DT) for combining classifiers
is proposed in [22]. Given L (trained) classifiers in D, c

Table 2

The confusion matrices of classifiers D1, D2, and D3

True label Guessed label

D1 D2 D3

x1 x2 x1 x2 x1 x2

x1 30 12 68 2 54 16

x2 4 54 5 25 12 18
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decision templates are calculated from the data, one per
class.

DTi ¼
1

Ni

X
zj2xi
zj2Z

DPðzjÞ; i ¼ 1; . . . ; c: ð7Þ

DTi can be regarded as the expected DP ðxÞ for class xi.
The support for the class offered by the combination of
the L classifiers, liðxÞ is then found using a measure of
similarity between the current DPðxÞ and DTi, e.g.,

liðxÞ ¼ 1� dEðDPðxÞ;DTiÞ

¼ 1�
Xc
j¼1

XL
k¼1

ðdk;jðxÞ � dtiðk; jÞÞ2; ð8Þ

where dtiðk; jÞ is the k; jth entry in decision template DTi.
Here we use the squared Euclidean distance for calcu-
lating the similarity but other measures can also be ap-
plied.
For the example, assume that the following decision

templates have been obtained from a data set Z using
Eq. (7),

DT1 ¼
0:62 0:38
0:52 0:48
0:6 0:4

0
@

1
A; DT2 ¼

0:46 0:54
0:56 0:44
0:48 0:52

0
@

1
A:

Given an object x with decision profile

DP ðxÞ ¼
0:6 0:4
0:4 0:6
0:3 0:7

0
@

1
A;

we use the squared Euclidean distance to calculate the
dissimilarity to DT1 and DT2, and subsequently the
support for the two classes

dEðDPðxÞ;DT1Þ ¼ ð0:6� 0:62Þ2 þ ð0:4� 0:38Þ2

þ ð0:4� 0:52Þ2 þ ð0:6� 0:48Þ2

þ ð0:3� 0:6Þ2 þ ð0:7� 0:4Þ2

¼ 0:2069;

dEðDPðxÞ;DT2Þ ¼ 0:1552;

l1ðxÞ ¼ 1� dEðDPðxÞ;DT1Þ ¼ 1� 0:2096 ¼ 0:7904;

l2ðxÞ ¼ 1� 0:1552 ¼ 0:8448:

Since l2 > l1 we assign class label x2 to x.

2.6. Oracle (ORA)

This is an abstraction, which is only used as a possible
upper limit on the classification accuracy. It works by
correctly classifying an object provided at least one of
the L classifiers correctly classifies the object.

2.7. Differences between the methods

The combination methods can be divided into groups
by whether they require training or not and by the type
of individual classifier output they require [1]. Majority
Vote and the other simple combination methods of
MAX,MIN, AVR, and PRO do not require any training
whilst the remaining methods require training.
There are two main levels of classifier output that

different combination methods may require: measure-
ment and abstract [23]. At measurement level we have
DP ðxÞ as the L by c matrix (6), and at the abstract level,
we have the crisp classifier outputs s1; . . . ; sL 2 XL. De-
cision templates, Maximum, Minimum, Average and
Product all work at the measurement level of informa-
tion. Majority vote, Behavior–knowledge space, Wer-
necke’s method and Naive Bayes work with the abstract
level of information. Of course since all outputs can be
transformed from measurement to abstract label (as-
signing crisp class labels), the methods of the latter
group will work for measurement outputs as well.

3. Measures of diversity

There are different diversity measures available from
different fields of research. Some of these measures, such
as the Q-statistic and the correlation coefficient have
come directly from mainstream statistics whilst others
have developed through the field of statistical pattern
recognition, specifically for the problems of multiple
classifier systems. Some of these measures work on the
whole group of L classifiers whilst other measures con-
sider the classifiers on a pairwise basis and then average
the results.

3.1. Pairwise diversity measures

Consider two classifiers, Di and Dk, and a 2� 2 table
that summarises their outputs as shown in Table 3. The
entries in the table are the probabilities for the respective
pair of correct/incorrect outputs.
There are various statistics to assess the similarity of

two classifier outputs.

Table 3

The 2� 2 relationship table with probabilities
Dk correct (1) Dk wrong (0)

Di correct (1) a b

Di wrong (0) c d

Total aþ bþ cþ d ¼ 1
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3.1.1. The Q statistic (Q)
Yule’s Q statistic [24] for two classifiers, e.g., Di and

Dk, is

Qi;k ¼
ad � bc
ad þ bc

: ð9Þ

For statistically independent classifiers, Qi;k ¼ 0. Q
varies between �1 and 1. For a set of L classifiers, the
averaged Q statistics of all pairs is taken.

3.1.2. The correlation coefficient (q)
The correlation between two binary classifier outputs

(correct/incorrect) is

qi;k ¼
ad � bcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðaþ bÞðcþ dÞðaþ cÞðbþ dÞ
p : ð10Þ

For any two classifiers, Q and q have the same sign,
and it can be proved that jqj6 jQj.

3.1.3. The disagreement measure (D) (used in [25,26])

Di;k ¼ bþ c: ð11Þ

3.1.4. The double-fault measure (DF) (used in [27])

DFi;k ¼ d: ð12Þ
We note that all these pairwise measures have been
proposed as measures of (dis)similarity in the numerical
taxonomy literature (e.g., [28]).

3.2. Non-pairwise diversity measures

For the non-pairwise measures we quote the formulae
for L classifiers. Let Z ¼ fz1; . . . ; zNg be a labelled data
set, zj 2 Rn coming from the classification problem in
question. We can represent the output of a classifier Di

as an N-dimensional binary vector yi ¼ ½y1;i; . . . ; yN ;i�T,
such that yj;i ¼ 1, if Di recognises correctly zj, and 0,
otherwise, i ¼ 1; . . . ; L.

3.2.1. Kohavi–Wolpert variance (kw)
We take the formula for the variance from Kohavi

and Wolpert’s paper [29]. They derived a decomposition
formula for the error rate of a classifier, giving an ex-
pression of the variability of the predicted class label b
for x, across training sets, within a specific classifier
model as

variancex ¼
1

2
1

 
�
Xc
i¼1

Pðb ¼ xi jxÞ2
!
; ð13Þ

where P ðb ¼ xi jxÞ is estimated as an average over dif-
ferent data sets. We use their general idea by looking at
the variability of the predicted class label for x (for the

given training set) using the classifier models D1; . . . ;DL.
Instead of considering the class labels in X, we consider
two possible classifier outputs: correct and incorrect.
P ðb ¼ 1 jxÞ and P ðb ¼ 0 jxÞ will be obtained as an av-
erage over D. If we denote by lðzjÞ the number of
classifiers from D that correctly recognise zj, i.e., lðzjÞ ¼PL

i¼1 yj;i we obtain:

P ðb ¼ 1 jxÞ ¼ lðxÞ
L

and P ðb ¼ 0 jxÞ ¼ L� lðxÞ
L

: ð14Þ

Substituting (14) into (13),

variancex ¼
1

2
ð1� P ðb ¼ 1 jxÞ2 � P ðb ¼ 0 jxÞ2Þ ð15Þ

and averaging over the whole of the training set Z, we
obtain the kw measure of diversity as

kw ¼ 1

NL2
XN
j¼1

lðzjÞðL� lðzjÞÞ: ð16Þ

3.2.2. Measurement of interrater agreement (j) (used in
[30])
If we denote �pp to be the average individual classifi-

cation accuracy in the ensemble, then

j ¼ 1�
ð1=LÞ

PN
j¼1 lðzjÞðL� lðzjÞÞ

NðL� 1Þ�ppð1� �ppÞ ð17Þ

and so j can be shown to be related to kw and D as
follows

j ¼ 1� L
ðL� 1Þ�ppð1� �ppÞ kw ¼ 1� 1

2�ppð1� �ppÞD: ð18Þ

3.2.3. The entropy measure (Ent)
The highest diversity among classifiers for a particu-

lar zj 2 Z is manifested by bL=2c of the votes in yj with
the same value (0 or 1) and the other L� bL=2c with the
alternative value. If they all were 0’s or all were 1’s, there
is no disagreement, and the classifiers cannot be deemed
diverse. One possible measure of diversity based on this
concept is

Ent ¼ 1

N

XN
j¼1

1

ðL� bL=2c � 1Þ min
XL
i¼1

yj;i; L

(
�
XL
i¼1

yj;i

)
:

ð19Þ
Ent varies between 0 and 1, where 0 indicates no

difference and 1 indicates the highest possible diversity.
While value 0 is achievable for any number of classifiers
L and any p, value 1 can only be attained for p 2
½ðL� 1Þ=2L; ðLþ 1Þ=2L�.
It should be noted here that our measure Ent is a non-

classical entropy measure because it does not use the
logarithm function. A classical version of this measure is
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proposed by Cunningham and Carney [3] (we denote it
here as ECC).

1 Taking the expectation over the whole
feature space, letting the number of classifiers L! inf,
and denoting by a the proportion of 1’s (correct outputs)
in the team, the two expressions become

EntðaÞ ¼ 1
2
minfa; 1� ag and

ECCðaÞ ¼ �a logðaÞ � ð1� aÞ logð1� aÞ: ð20Þ

Fig. 1 plots the two entropies versus a.
The two measures are equivalent up to a (nonlinear)

monotonic transformation. This means that they will
have a similar pattern of relationship with the team
accuracy. As Ent is easier to handle and quicker to
calculate, we use it in the experiment.

3.2.4. The measure of difficulty (h)
The idea for this measure came from a study by

Hansen and Salomon [31]. We define a discrete random
variable X taking values in f0L; 1L; . . . ; 1g and denoting the
proportion of classifiers in D that correctly classify an
input x drawn randomly from the distribution of the
problem. The measure of difficulty h is defined as

h ¼ VarðX Þ: ð21Þ
The higher the value of h, the worse the classifier team.

3.2.5. Generalised diversity (GD)
This measure has been proposed in [32]. Let Y be a

random variable expressing the proportion of classifiers
(out of L) that fail on a randomly drawn object x 2 Rn.
Denote by pi the probability that Y ¼ i=L. (Note that
Y ¼ 1� X , where X is the variable introduced for h).
Denote by pðiÞ the probability that i randomly chosen
classifiers will fail on a randomly chosen x. Then

pð1Þ ¼
XL
i¼1

i
L
pi ð22Þ

and

pð2Þ ¼
XL
i¼1

i
L

ði� 1Þ
ðL� 1Þ pi: ð23Þ

The generalised diversity measure, GD, is

GD ¼ 1� pð2Þ
pð1Þ : ð24Þ

3.2.6. Coincident failure diversity (CFD)
This is a modification of GD proposed in [33].

CFD ¼ 0; p0 ¼ 1:0;
1

1�p0

PL
i¼1

L�i
L�1 pi; p0 < 1:

�
ð25Þ

4. Commonalities and differences between the measures

For the case of correct/incorrect (1/0) classifier out-
puts (oracle-type outputs), kw differs from the averaged
disagreement measure D by a coefficient [34]. Also for
the case with L ¼ 3 classifiers, kw and Ent differ by a
coefficient (Appendix A, Proposition 2). This in turn
means that the disagreement measure and Entropy differ
by a coefficient for the three classifier case, with correct/
incorrect, outputs, i.e.,

kw ¼ L� 1
2L

D ð1=0 outputsÞ

) kw ¼ 1
3
D ð1=0 and L ¼ 3Þ

kw ¼ 2
9
Ent ð1=0 and L ¼ 3Þ

) D ¼ 2
3
Ent ð1=0 and L ¼ 3Þ:

We can consider the measures of diversity in two
groups:

• measures looking for diversity: the higher the value
the more diverse ð"Þ;

• measures looking for similarity: the higher the value
the less diverse ð#Þ.

D, kw, Ent, GD and CFD belong to the first group. Q,
q, DF, j and h belong to the second group. Also, Q, q
and j can take negative values, indicating negative
correlation between the classifiers.

4.1. Upper and lower limits for diversity measures

The upper and lower limits for the measures of di-
versity depend on the number of classifiers, L, and the
value of p, the individual classifier accuracy. The limits
for the case with two classifiers with equal individual
accuracy p have been determined in [35]. Figs. 2 and 3

Fig. 1. The two entropy measures EntðaÞ (thin line) and ECCðaÞ (thick
line) plotted versus a.

1 We wish to thank the anonymous reviewer C for pointing this

reference to us.
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show the upper and lower limits for the ten measures of
diversity for the case with L ¼ 3 and p 2 ½0:5; 1:0�. They
have been derived from the two classifier case limits by
considering the possible range of each measure for
p ¼ 0:5; 0:6; 2

3
; 0:7; 0:8; 0:9; 1:0. It was found that there

was often a change of direction of the curve at the point
2=3.
To summarise, the 10 measures of diversity used in

this study are:

• The Q-statistic ðQÞ, ð#Þ
• The correlation coefficient ðqÞ, ð#Þ
• The disagreement measure ðDÞ; ð"Þ
• The double-fault measure ðDF Þ; ð#Þ
• The Kohavi–Wolpert variance ðkwÞ; ð"Þ
• The measurement of interrater agreement ðjÞ; ð#Þ
• The entropy measure ðEntÞ; ð"Þ
• The measure of difficulty ðhÞ; ð#Þ
• The generalised diversity ðGDÞ; ð"Þ
• The coincident failure diversity ðCFDÞ; ð"Þ

4.2. Cross-relationship between combination methods and
diversity measures

In our study one of the issues we are considering is
the cross-relationship between the combination methods
and the diversity measures. If we can find a strong
correlation between any of the diversity measures and
the accuracy of any of the combination methods then
this will allow us to use the diversity of a set of classifiers
as an indication of the ensemble accuracy obtained by
combining them. This would allow us to select the ‘best’
subset of classifiers from a larger group or even use the
diversity directly in the generation of a ‘diverse’ set of
classifiers for an ensemble.

5. Experimental set-up

We used two databases summarised in Table 4, both
taken from the UCI Repository of Machine Learning
Database available at http://www.ics.uci.edu/�mlearn/
MLRepository.html: The Wisconsin Breast Cancer
Database 2 and the Pima Indian Diabetes Database.
The initial experimental protocol is also displayed in

Table 4. From the original 30 features for the Breast
Cancer data we used the first 10 so that we could run an
exhaustive experiment with all possible partitions. We
chose the first 10 because the features in this data set
were logically grouped into 1–10, 11–20, 21–30. All
partitions for three classifiers of the form 4; 3; 3 (4200)
and 4; 4; 2 (3150) were generated so that the first clas-
sifier has four features as input, the second classifier has
3(4) features as input and the third classifier has 3(2)
features as input. For each partition we designed, one
ensemble of three linear classifiers and one ensemble of
three quadratic classifiers. This is why the total number
of ensembles for the Breast Cancer data is twice the total
number of partitions. Our preliminary studies showed
that there are no substantial differences between the four
cases, so we pooled the data, thereby creating a set of
14,700 classifier teams.
For the Pima Diabetes data, we took all partitions of

the form 3; 3; 2 using 10-fold cross-validation to obtain a
total of 560 ensembles. We note that our main experi-
ment was on the Breast Cancer data because of the
larger number of ensembles generated, and the Pima
Indian Diabetes data was used mainly for re-confirma-
tion and validation of the results. For space reasons, we

Fig. 2. The possible range of values (grey areas) for the five ð"Þ measures of diversity for p 2 ½0:5; 1:0� individual classifier accuracy and L ¼ 3
classifiers.

Fig. 3. The possible range of values (grey areas) for the five ð#Þ measures of diversity for p 2 ½0:5; 1:0� individual classifier accuracy and L ¼ 3
classifiers.

2 Created by Dr. William H. Holberg, W. Nick Street and Olvi L.

Mangasarian, University of Wisconsin.
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decided that the results with the Breast Cancer data will
be displayed in detail, whereas the results with the Pima
Diabetes data will be discussed if there are relevant
differences.
We then considered:

1. The overall accuracies of the combination methods
and their improvement over the single best classifier.

2. The range of values for the measures of diversity.
3. The correlation between each method of combination
and all other methods of combination.

4. The correlation between each measure of diversity
and all other measures of diversity.

5. The correlation between each of the methods of com-
bination and each of the measures of diversity.

The correlation coefficient used was Pearson’s Product
Moment correlation coefficient.

6. Results

6.1. Overall accuracies

Fig. 4(a) shows the accuracy on the testing data for
the Breast Cancer Database: the single best classifier
(best on the testing set!), the individual classifiers and

the ensemble. The dashed horizontal line is the average
accuracy of the single best classifier. Fig. 4(b) shows the
improvement over the single best classifier accuracy (in
%). The dashed line at 0 represents accuracy identical to
the single best classifier. For both graphs, the lower end
of each bar is the minimum value, the upper end of each
bar is the maximum value, and the circled point is the
average value.
Fig. 4 shows that all of the combination methods

(excluding Oracle) are of similar accuracy, and have
only a slight improvement over the average accuracy of
the single best classifier. Not surprisingly, being a fa-
vourable abstraction, the Oracle shows an improvement
over the single best classifier in all cases.
As we would expect, D3 has poorer results than D1

and D2 since it only has two features to work with for
the ð4; 4; 2Þ partitions and three for the ð4; 3; 3Þ parti-
tions. Similarly, D1 performs better than the other two
classifiers since it always has four features to work with.
As Fig. 4 indicates, the lower limit of the individual

accuracies is greatly improved by combining the three
classifiers. The behaviour–knowledge space method and
Wernecke’s method have lower minimum values than
the other combination methods suggesting variability in
their performance.
The results using the Pima Diabetes data do not show

any significant difference in the range of values obtained

Fig. 4. Accuracy (a) and improvement (b) on the testing set for the individual classifiers and the ensemble.

Table 4

Summary of the data sets and the experiments

Name c N n ðn1; n2; n3Þ Total number of

ensembles

Training/testing

Wisconsin Breast Cancer 2 569 10 ð4; 4; 2Þ 6300 Hold-out

(random halves)

ð4; 3; 3Þ 8400

Pima Indian Diabetes 2 768 8 ð3; 3; 2Þ 560 10-fold cross-validation

Key: c: number of classes; N: number of objects in the data set; n: number of features used; ðn1; n2; n3Þ: partition sizes; D1 uses n1 of the n features, D2
uses n2, and D3 uses n3 features.
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for combination accuracy to those displayed above,
found using the Breast Cancer data.
The failure of the ensemble to improve on the single

best classifier can be explained by the hypothesis that
all features were relevant and breaking them into sub-
sets diminishes the chances of finding three good classi-
fiers. More importantly, by ‘‘single best’’ we assumed the
classifier with the best testing accuracy. Thus we gave a
hard task to the ensemble compared to surpassing the
single best classifier identified on the training data. The
simple reason is that the ‘‘best training’’ classifier will
not always be the ‘‘best testing’’ classifier and the aver-
aged ‘‘single (training) best’’ accuracy on the testing set
would be lower than the averaged ‘‘single (testing) best’’
accuracy.
In a way, the lack of improvement is not a bad result

for our study. We would like to find a relationship be-
tween diversity and accuracy, which will help in uncer-
tain situations like this. Ideally, we would like diversity
to be sensitive enough to predict the improvement or the
lack of it.

6.2. Overall diversities

With the Breast Cancer data, the minimum observed
value of the individual classifier accuracy, p, was 0.6807,
the maximum was 0.9439 and the overall mean was
0.8922. Table 5 shows the observed range of values for

the ten measures of diversity compared with their the-
oretical limits for the observed values of p, assuming
equal p. The theoretical limits were deduced from the
graphs shown previously in Figs. 2 and 3.

Q, q and j all take negative values when the classifiers
are negatively correlated. Given that none of these
measures has any negative values, we can conclude that
the classifiers are not very diverse. The measures where
low values indicate high diversity, ð#Þ, except DF and h,
have high values , toward the right end of the range, as
shown in Table 5. The measures where high values in-
dicate high diversity, ð"Þ, except for CFD, have low
values. This suggests overall, that the classifiers are less
diverse than they could theoretically be, if identical ac-
curacies p are assumed.
It is interesting to note that even though the measures

do not indicate identical or close to identical classifiers,
the average accuracy of the team was similar to the
average best individual accuracy. Thus a range of values
of diversity did not span a similar range of improve-
ment/degradation of team accuracy. This is an early
indication of the lack of any strong relationship between
diversity measures and team accuracy in real-life clas-
sification problems.
Results from the Pima Diabetes data do not show any

significant difference in the range of values obtained for
the diversity measures to those above found using the
Breast Cancer data.

Table 5

The observed range of values for the diversity measures compared with the theoretical limits possible for the observed values of p

Measure Observed p Theoretical limits for �pp Observed span Graphical representation

Q ð#Þ 0.7–0.9 ½�1:00; 1:00� ½0:30; 0:99�

q ð#Þ 0.7–0.9 ½�0:43; 1:00� ½0:16; 0:83�

DF ð#Þ 0.7–0.9 ½0:00; 0:2� ½0:03; 0:08�

j ð#Þ 0.7–0.9 ½�0:43; 1:00� ½0:12; 0:82�

h ð#Þ 0.7–0.9 ½0:02; 0:16� ½0:04; 0:08�

D ð"Þ 0.7–0.9 ½0:00; 0:6� ½0:03; 0:26�

kw ð"Þ 0.7–0.9 ½0:00; 0:20� ½0:01; 0:09�

Ent ð"Þ 0.7–0.9 ½0:00; 0:60� ½0:04; 0:38�

GD ð"Þ 0.7–0.9 ½0:00; 1:00� ½0:12; 0:75�

CFD ð"Þ 0.7–0.9 ½0:00; 1:00� ½0:31; 0:87�

(�) theoretical; (j) observed range of values.
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6.3. Correlation amongst the combination methods

Fig. 5(a) and (b) illustrate the correlation between the
combination methods. The intensity of the colour is
determined by the correlation. The stronger the corre-
lation the lighter the colour. We found that the combi-
nation methods show only positive correlation amongst
themselves. Fig. 5(c) and (d) show the dendrograms
formed when we cluster the combination methods using
average-linkage relational clustering. 3 The lower the
branches joining the different combination methods the
stronger the relationship between them. Using all graphs
from Fig. 5 we found the following:

1. Majority vote is highly positively correlated with Na-
ive Bayes. In fact, for the ð4; 3; 3Þ partitions with
QDC, MAJ and NB are almost equivalent as they
have a correlation of 0.999.

2. Behaviour–knowledge space is highly positively cor-
related with Wernecke’s method, which can be ex-
pected, knowing that Wernecke’s method is a
‘‘regularised’’ version of BKS.

3. Average is highly positively correlated with Product,
and Minimum and Maximum are identical (proof in
the Appendix A).

4. While the above three tendencies are common for
both sets of experiments, the overall correlation be-
tween the combination methods with the Pima Dia-
betes data was much lower (darker shades in plot
(b)). Looking at the dendrogram in (c), we cannot
identify a ‘‘true’’ number of clusters in the set of
methods because there are no big ‘‘jumps’’ of the

(c)

Fig. 5. The overall correlation between the combination methods and the cluster dendrograms for Breast Cancer data ((a) and (c)) and Pima Indian

Diabetes data ((b) and (d)).

3 The clustering routine and the dendrogram drawing routine are

from the package PRTOOLS for Matlab [36].
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clustering criterion value. The dendrogram in (d) re-
inforces the findings in 1–3, suggesting the following
grouping of the methods (ðMAJ ;NBÞ, ðAVR; PROÞ,
ðMIN ;MAX Þ, ðBKS;WERÞ, ðDT Þ, ðORAÞ).

5. For the Breast Cancer data, the Oracle appears to be
different from all the other combination methods,
which correlate well among themselves. With the
Pima Indian Diabetes data, the methods are different
from each other and yet none of them has a high cor-
relation with the Oracle.

6.4. Correlation amongst the diversity measures

Figs. 6(a) and (b) illustrate the correlation between
the diversity measures. The absolute values of the cor-
relation coefficients have been taken to illustrate
any correlation, whether it is positive or negative. The
stronger the correlation the lighter the colour. Figs. 6(c)
and (d) show the dendrograms formed when we cluster

the diversity measures using average-linkage relational
clustering. The lower the branches joining the different
diversity measures are, the stronger the relationship
between them. Using all graphs from Fig. 6 we found
that the relationships are more complicated than for the
combination methods with the dendrogram producing
quite different clusters for the two data sets. The results
we found using both data sets are:

• D ¼ kw ¼ Ent is highly correlated with j.
• GD is strongly correlated with j and q.
• DF only shows strong correlation with h.
• q is correlated with CFD and Q for both data sets as
well.

Again, the number of ‘‘true’’ clusters is unclear because
whilst both dendrograms appear to show two distinct
clusters, the diversity measures within those clusters are
not the same for both data sets.

(c) (d)

(b)(a)

Fig. 6. The overall correlation between the diversity measures and the cluster dendrograms for Breast Cancer data ((a) and (c)) and Pima Indian

Diabetes data ((b) and (d)).
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6.5. Correlation between the combination methods and the
diversity measures

We took each of the combination method’s results (a
column of accuracies, range: 0–1) and each of the di-
versity measure’s results (a column of values whose
range depends upon the diversity measure in question)
and calculated the correlation between the two. Table 6
shows the correlation between the combination meth-
ods and the diversity measures for the Breast Cancer
data and Table 7 for the Pima Indian Diabetes data.
Those correlations with absolute value greater than 0.3
are shown in bold italics. We can see that there are not
many strong relationships consistent in both tables.
The correlations between the combination methods and
diversity measures are not as strong as those amongst
the combination methods and diversity measures
separately. The correlations show that many of the
combination methods and diversity measures are even
independent! Thus we have very little evidence of any
relationships between the combination method accu-
racy and the diversity measure value. This means that
we can hardly use these diversity measures as an in-
dicator, guide, or predictor in designing classifier en-
sembles.
Oracle had stronger correlations (negative or posi-

tive) than all other methods of combination with every
measure of diversity, but Oracle is not a true combina-
tion method and we did not show it in the table. We

found that only DF and h show significant correlations
in both tables, but then only with MAJ and NB.

7. Analysis and conclusions

In this paper, we studied the relationships between
different methods of classifier combination and measures
of diversity. We considered 10 combination methods and
10 measures of diversity. We took a dataset of 10 feature
values for 569 patients and using all partitions of the
form ð4; 4; 2Þ and ð4; 3; 3Þ for two types of classifier,
conducted a set of four enumerative experiments. The
results from these four experiments were combined to
give an overall set of 14,700 classifier teams.We also took
a data set of eight feature values for 768 patients and
conducted a set of 10-fold cross-validation experiments.
We then considered the overall accuracies of the

combination methods and their improvement over the
single best classifier. Also the range of values for
the measures of diversity. Next we studied the correlation
amongst the combination methods, the correlation
amongst diversity measures, and the cross-correlation
between the methods of combination and the measures
of diversity.
We found that the classifiers were not very diverse

and this meant that the combination methods did not
improve notably over the single best classifier. We also
found some interesting correlation amongst both the

Table 6

Breast Cancer: correlations between the combination methods and diversity

CombnDiv Q q j GD CFD D DF h

MAJ )0.080 )0.099 )0.116 0.139 0.241 0.019 )0.423 )0.596
NB )0.060 )0.080 )0.093 0.115 0.208 )0.002 )0.495 )0.572
MAX 0.056 0.095 0.056 )0.051 )0.008 )0.078 )0.197 )0.274
AVR )0.088 )0.046 )0.080 0.091 0.168 0.035 )0.349 )0.398
PRO )0.044 0.003 )0.039 0.045 0.108 0.009 )0.277 )0.329
BKS )0.005 )0.031 )0.044 0.059 0.054 )0.020 ) 0.365 )0.437
WER 0.005 )0.019 )0.034 0.047 0.039 )0.023 )0.342 )0.413
DT 0.055 )0.018 )0.028 0.047 0.123 )0.049 )0.365 )0.443

Table 7

Pima Diabetes: correlation between the combination methods and diversity

CombnDiv Q q j GD CFD D DF h

MAJ )0.168 )0.254 )0.250 0.355 0.647 0.102 )0.566 )0.423
NB )0.055 )0.128 )0.134 0.223 0.440 0.015 )0.415 )0.283
MAX )0.100 )0.102 )0.107 0.082 0.061 0.142 )0.009 )0.054
AVR )0.177 )0.215 )0.208 0.226 0.328 0.186 )0.246 )0.227
PRO )0.170 )0.190 )0.187 0.188 0.257 0.184 )0.174 )0.180
BKS 0.057 0.001 )0.049 0.108 0.102 )0.029 )0.259 )0.158
WER 0.059 0.003 )0.046 0.107 0.103 )0.035 )0.262 )0.159
DT 0.085 0.080 0.065 )0.058 )0.049 )0.067 0.006 0.055
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combination methods and the diversity measures. In
particular Majority vote’s, (MAJ), strong correlation
with Naive Bayes, (NB), and the measurement of in-
terrater agreement’s, (j), very strong correlation with
the generalised diversity, (GD).
We found very little correlation between the combi-

nation methods and the diversity measures, in fact, most
of them showed independence. GD, CFD, DF and h were
the only measures to show any correlations with the
combination methods greater than 0.3, but only double-
fault, DF, and the measure of difficulty, h, showed any
such correlations consistent in both data sets. This result
is discouraging because the measures of diversity are
supposed to give an indication of classifier combination
performance, and yet we found very little evidence
of any correlation in these real-data problems. Of the
correlations we have found, h shows a stronger negative
correlation with the combination methods than DF does
for the Breast Cancer data but has less negative corre-
lation than DF for the Pima Diabetes data. Also h is
more computationally expensive than DF. Perhaps the
reason that DF and h showed stronger correlations is
because they are not exactly measures of diversity but
have a subtle conceptual relationship with the accuracy?

DF and/or h may be beneficial if we intend to use
Majority vote and Naive Bayes which had the strongest
correlations with the two measures. We could take DF
and/or h to guide us towards designing or selecting the
classifiers in a team, trying to minimise the measures over
a set of possible teams. In our experiment the measure
with the strongest correlation depended upon which data
set was being used, so maybe a combination of the two
should be sought. However, DF is much simpler to cal-
culate and so may be preferred for some tasks.
Since the correlation between these measures of di-

versity and combination methods is not very high or
consistent, the question of the participation of diversity
measures in designing classifier ensembles is still open.
Directly calculating the accuracy for the chosen com-
bination method makes more sense than calculating the
diversity and trying to predict the accuracy, with the
measures currently at our disposal. Even if the measure
of diversity is easier to calculate than some combination
methods, the ambiguous relationship between diversity
and accuracy discourages optimising the diversity.
One avenue that might suggest a useful method for

building classifier teams based on diversity is finding a
more precise formulation of the notion of diversity and
thereby constructing a more practical measure. Until
then, different heuristics can be explored.

Acknowledgements

We gratefully acknowledge the suggestions given by
the anonymous reviewers.

Appendix A. Proof of equivalence relationships

Proposition 1. Let D ¼ fD1; . . . ;DLg;X ¼ fx1;x2g. Let
a1; . . . ; aL be the outputs of the classifiers for class x1, and
1� a1; . . . ; 1� aL be the outputs for class x2, ai 2 ½0; 1�.
Then the class label assigned to x by the MAX and MIN
combination rules will be the same.

Proof. Without loss of generality assume that a1 ¼
mini ai, and aL ¼ maxi ai. Then the minimum combina-
tion rule will pick a1 and 1� aL as the support for x1
and x2, respectively, and the maximum rule will pick aL
and 1� a1. Consider the three possible relationships
between a1 and 1� aL.
If a1 > 1� aL then aL > 1� a1, and we would select
class x1 with both methods,
If a1 < 1� aL then aL < 1� a1, and we would select
class x2 with both methods.
If a1 ¼ 1� aL then aL ¼ 1� a1, and we will pick a
class at random with both methods. �

Proposition 2. Let L ¼ 3 so that D ¼ fD1;D2;D3g. Then
Ent and kw, calculated from a data set Z ¼
fz1; . . . zng; zj 2 Rn, are equivalent up to a coefficient, i.e.,
kw ¼ 2=9Ent:

Proof.

For three classifiers :

kw ¼ 1

9N

XN
j¼1

lðzjÞ 3
�

� lðzjÞ
�
;

Ent ¼ 1

N

XN
j¼1
min lðzjÞ; 3

�
� lðzjÞ

�
;

where lðzjÞ is the number of classifiers that correctly
classify object zj, therefore we need to show that:

1

9N

XN
j¼1

lðzjÞ 3
�

� lðzjÞ
�
¼ 2
9

1

N

XN
j¼1
min lðzjÞ; 3

� 
� lðzjÞ

�!
:

Consider the possible values of lðzjÞ with three clas-
ses, and the respective values for Ent and kw in Table 8.
We can see that the sum of entries from column 4

of Table 8 will always be twice the sum of the

Table 8

Possible values for Ent and kw from the different values of lðzjÞ
lðzjÞ ð3� lðzjÞÞ Ent minflðzjÞ;

3� lðzjÞg
kw lðzjÞ
�ð3� lðzjÞÞ

0 3 0 0

1 2 1 2

2 1 1 2

3 0 0 0
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corresponding entries from column 3 of Table 8. Denote
B ¼

PN
j¼1 bj where bj ¼ min lðzjÞ; 3� lðzjÞ

� �
.

Then Ent ¼ 1

N
B and kw ¼ 1

9N
2B ¼ 2

9
Ent: �

Note that this only holds for the case when there are
three classifiers. If there are four or more classifiers there
is no linear relationship between the values for kw and
Ent as in the table.
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