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Abstract

Wireless capsule endoscopy involves inspection of hours of video material by a highly qualified professional. Time episodes corre-
sponding to intestinal contractions, which are of interest to the physician constitute about 1% of the video. The problem is to label auto-
matically time episodes containing contractions so that only a fraction of the video needs inspection. As the classes of contraction and
non-contraction images in the video are largely imbalanced, ROC curves are used to optimize the trade-off between false positive and
false negative rates. Classifier ensemble methods and simple classifiers were examined. Our results reinforce the claims from recent lit-
erature that classifier ensemble methods specifically designed for imbalanced problems have substantial advantages over simple classifiers
and standard classifier ensembles. By using ROC curves with the bagging ensemble method the inspection time can be drastically reduced
at the expense of a small fraction of missed contractions.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The number of applications of machine learning to clin-
ical problem solving is growing. New multimedia technol-
ogies, including real-time video, present a challenge today
because of the considerable size of the databases that they
generate. Some of the main difficulties root in the huge
amount of data to be analyzed and the difference between
the prevalences of the classes of interest within the dataset.
One paradigmatic example of this situation is found in the
clinical problem addressed by this paper: the detection of
intestinal contractions in video images.

Both the number of intestinal contractions, and their
distribution along the intestinal tract, characterize patterns
of low bowel motility that are indicative of presence of dif-
ferent malfunctions (e.g., myopathy, neuropathy, obstruc-
tion, etc.). Wireless capsule video endoscopy (WCVE)
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(Schulmann et al., 2005; Brodsky, 2003; Eliakim, 2004) is
a recent technology in which a pill with an attached camera
is swallowed by the patient. The camera travels along the
intestinal tract and emits a radio signal recorded as a video
(Hansen, 2002). Currently, the medical expert looks for
contractions by visual inspection, labelling by hand video
frames identified as contractions, for further reference, a
process that may require more than 1 h. Thus our efforts
were focused on automatic detection of contraction frames
in the video.

The prevalence of contraction frames in a video is very
small; between 1:50 and 1:100. This implies an imbalanced

or a cost-sensitive problem. In such problems, even a small
error rate results in an unacceptably large number of false
positive classifications. We propose to use ROC curves
to evaluate several classifier models, including classifier
ensembles. The aim is to help the expert by identifying
locations in the video which contain contractions with high
probability thereby greatly reducing the inspection time.

The rest of the paper is organized as follows. Section 2
explains the methodology used: data preparation, classifier
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ensembles design, and ROC curve analysis. In Section 3 we
present and discuss the results of our experiments. Finally,
Section 4 concludes the work and suggests further research
directions.

2. Methodology

2.1. Feature extraction from endoscopic sequences

Different medical imaging modalities have been used for
intestinal motility analysis, e.g., non-invasive examinations
such as plain abdominal X-ray, magnetic resonance imag-
ing (MRI), photon emission computed tomography
(PET) and functional MRI (f-MRI) and invasive examina-
tions such as manometry, electromyography and intuba-
tion (Hansen, 2002). All are currently in use in medical
practice benefiting from simultaneous analysis of different
modalities.

The video data of our study is provided by wireless cap-
sule video endoscopy (WCVE) (Adler and Gostout, 2003).
This is a recent technology in which a pill with an attached
camera is swallowed by the patient. The camera travels
along the intestinal tract and emits a radio signal recorded
by an external device. The result is a video of approxi-
mately 20,000 frames of clinical interest, accounting for
about a 3-h real life time span. This examination method
has been used successfully in several clinical applica-
tions and studies (Schulmann et al., 2005; Brodsky, 2003;
Eliakim, 2004).
Fig. 1. Video frames obtained from wireless endoscopy: typical patterns of co
frames and (b) three non-contraction sequences of nine frames.
Fig. 1 shows two sequences of frames, where sequences
in (a) represent contractions while sequences in (b) repre-
sent non-contractions. As it can be seen, the appearance
of a contraction in such a sequence of frames does not have
a clear definition. The clinical interest underpinning this
study is in the automatic detection of one specific type of
intestinal contraction, which corresponds to the top
sequence in Fig. 1(a). This contraction type is of special
interest to the physician in fasting scenarios. In a video
sequence of about nine frames, the contraction is repre-
sented as the lumen progressively closing and reopening.
In order to describe this paradigm of contraction, we
extracted 34 features using basic image descriptors: mean
intensity of each frame, x1, . . . ,x9; hole size of each frame,
x10, . . . ,x18; global contrast of each frame, x19, . . . ,x27.

The three descriptors measured along the nine frames
can be regarded as time sequences. Each sequence is nor-
malized by taking out the mean and dividing by the stan-
dard deviation so that we look at the time pattern only.

The seven remaining features are: x28 is the correlation
between sequences x1, . . . ,x9 and x10, . . . ,x18; x29 is the cor-
relation between sequences x1, . . . ,x9 and x19, . . . ,x27; and
x30 is the correlation between sequences x10, . . . ,x18 and
x19, . . . ,x27. Features x31, x32, x33 are the correlations
between sequences x1, . . . ,x9, x10, . . . ,x18 and x19, . . . ,x27

on the one hand and the corresponding sequences averaged
across the objects for the class ‘‘contractions’’. Feature x34

is the variance of intensity averaged across the nine frames.
This value is then normalized by taking out the mean
ntractions and non-contractions. (a) Three contraction sequences of nine



Fig. 2. Feature patterns for (a) contractions and (b) non-contractions. Each feature is identified by its number in the x-axis. The thick line corresponds to
the average value of the first descriptor for class contraction.
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across the whole video and dividing by the standard devi-
ation. Features x1, . . . ,x34 are plotted in Fig. 2 for examples
of contractions and non-contractions. The sequences are
joined by lines so as to see the shape patterns. The sequence
x1, . . . ,x9 averaged across class contraction is overlaid in
both subplots (the thick line).

In order to mitigate the imbalanced property of the
problem, a pre-processing stage was applied with a simple
feature selection procedure. For each of the 34 features, we
looked for a threshold that kept 99% of contractions (true
positives). Then we selected the feature which preserved
99% of class contractions within the minimum number of
frames. We found that among all frames with x5 6 �0.4,
we had 99% of class contraction. The set of all such frames
constituted about 25% (5000) of the video. This pre-
processing stage implies that all frames which have
x5 P �0.4 will be labeled as non-contractions and the
remaining frames will be run through our classifier for
labeling.

We carried out experiments without the pre-processing
stage. The resultant classifier was able to recognize the
same number of true contractions but had to process an
unnecessarily large amount of frames. Thus a large amount
of false positives was generated. Consider the following
example. In a video of 20,000 frames, there will be about
30 contractions. A threshold of 99% will most likely put
all 30 in the reduced set, so the large number of frames left
out after the pre-processing will be free of contractions
anyway.

2.2. Single classifiers and ensembles

The prevalence of contraction frames in a video is very
small: there are typically 30–50 contractions in a video
sequence of 5000 frames (a ratio less than 1:100). This
low prevalence of contractions implies an imbalanced

problem or a cost-sensitive problem. There are several
approaches to solving imbalanced problems, such as strat-
ified sampling (Chawla, 2003) and cost manipulation
(Domingos, 1999; Maloof, 2003; Ling and Li, 1998). Deci-
sion trees (Zadrozny and Elkan, 2001) and classifier ensem-
bles (Tan et al., 2003) have been adapted to imbalanced
problems too. Semi-supervised techniques have also been
proposed (See-Kiong et al., 2004), where the test samples
with the highest probability for the minority class are
added to the training set.

Stratified sampling was adopted for our imbalanced
problem. We used eight individual classifiers and two clas-
sifier ensemble methods. The individual classifiers were
linear discriminant classifier (LDC), quadratic discrimi-
nant classifier (QDC), logistic classifier (LOGLC), nearest
neighbor (k-NN) with k 2 {1,5,10}, decision trees (DT),
and Parzen classifier (Parzen) (Duda et al., 2001). The
two ensemble methods were: heterogeneous ensembles
and bagging. The heterogeneous ensembles were built by
taking a set of single classifiers of different types and aggre-
gating their outputs. As we applied eight classifiers, there
are 28 � 1 (empty set) � 8 (single classifiers) = 247 possible
heterogeneous ensembles. Bagging produces a classifier
ensemble whereby each classifier is trained on a bootstrap
sample. We constructed bagging ensembles of 25 decision
trees. In this study we used the average of the classifier out-
puts to be the ensemble output for both ensemble methods.
This was done because we need a continuous-valued output
as the ensemble decision. Our choice of bagging over Ada-
Boost (used for imbalanced problems in (Viola and Jones,
2001)) was based on the findings in the recent literature
that bagging is the better of the two models for datasets
with substantial amount of noise (Bauer and Kohavi,
1999).

2.3. ROC curves

ROC curve (receiving operating characteristic) analysis
has been widely used as a method for medical decisions
making. We assume that one of the classes is the class of
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Fig. 3. The ensemble with largest AUC (Parzen + decision tree) outper-
forms both single classifiers and follows the best behavior of its
components in the ROC curve.

Table 1
AUC for single classifiers and the best eight ensembles

Classifier AUC Ensemble AUC

LDC 0.9040 PARZEN + DT 0.9603
QDC 0.8878 DT + 10-NN 0.9599
LOQLC 0.9033 DT + 1-NN + 10-NN 0.9598
PARZEN 0.9160 DT + 5-NN 0.9591
DT 0.9463 DT + 1-NN + 5-NN 0.9591
1-NN 0.8938 DT + 1-NN 0.9583
5-NN 0.9582 PARZEN + DT + 1-NN 0.9582
10-NN 0.9567 LOQC + DT + 1-NN 0.9567
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interest and the objects labeled in this class will be called
‘‘positive’’. We also assume that each classifier gives a con-
tinuous-valued output which is cut at a certain threshold.
All objects for which the classifier output exceeds the
threshold are labeled as positive and the remaining objects
are labeled as negative. By varying the threshold from the
minimum to the maximum value of the classifier output, we
construct a ROC curve for this classifier. The curve shows
true positive rate (sensitivity) versus false positive rate
(1-specificity). The user is then able to decide upon a com-
promise between sensitivity and specificity achievable
simultaneously by the classifier. This compromise may be
based upon prior class probabilities or different misclassifi-
cation costs (Breiman et al., 1984; Maloof, 2003). ROC
curves have been especially useful for imbalanced or cost-
sensitive two-class problems (Kubat et al., 1998; Monard
and Batista, 2003; Mac Namee et al., 2002).

The area under the ROC curve (AUC) is deemed to be a
better measure of classifier performance than accuracy
(Bradley, 1997; Rosset, 2004; Ling et al., 2003). However,
in an imbalanced problem such as detection of contractions
in endoscopy videos we are looking for operation points on
the curve which will present the user with the best time-
accuracy compromise. The overall performance of the clas-
sifier is of secondary importance.

3. Experimental results

Our experiments were built in the following way: The
specialist analyzed 10 videos and manually labeled all
contractions. A subset of 305 typical examples was then
selected to be our class ‘contraction’ (positive). For the
non-contraction class (negative), 3050 examples were ran-
domly chosen from all the videos, taking special care that
the selected sequences did not belong to class contraction.

All eight classifiers, the 247 heterogeneous ensembles
and the bagging ensemble (25 decision trees) were trained
and tested 100 times and the results were averaged. For
each run we used the 305 contraction objects and a random
bootstrap sample of size 305 from the class ‘non-contrac-
tion’. This set of 610 objects was split randomly into
80/20 proportion for training and testing, respectively.

For all classifiers we used the Matlab toolbox
PRTOOLS developed by Professor R.P. Duin and his
group at the Delft University of Technology (Duin et al.,
2004). We used the implementation of the single classifiers
(LDC, QDC, LOGLC, 1-NN, 5-NN, 10-NN, decision tree
and Parzen) and built our own ensembles and bagging rou-
tines. The continuous-valued outputs of all classifiers were
used (these are available within PRTOOLS). For the calcu-
lus of the AUC, we used the trapezoidal rule, approximat-
ing the underlying function using linear interpolation.

The ROC curves for all classifiers were calculated on the
testing set. The ensemble with the largest area under the
curve appeared to be the one using just two classifiers: deci-
sion tree and Parzen, AUC = 0.9603. Fig. 3 plots the ROC
curve for this ensemble and also the ROC curves for the
two component classifiers. The remaining single classifiers
were very similar to one another and slightly worse than
the Parzen classifier. The hybrid ensemble outperforms
all single classifiers and follows the best behavior of
its components in the different areas of the ROC curve.
Table 1 displays the AUC for the individual classifiers as
well as for the best eight hybrid ensembles.

The physicians are interested in two different operation
points on the ROC curve: accuracy of positive detection
over a 98%, and minimization of visualization time, with a
guarantied positive detection over 80%. This brings to the
fore two different areas of the ROC curve as marked in
Fig. 3. The shaded vertical stripe shows an example of a
desirable time-optimization area. Its width denotes the
maximum FP rate we are prepared to accept. To see how
this is related to time-optimization, consider an example
of an (unthresholded) video of 20,000 frames with 30
contractions in it. Assuming that all contractions were cor-
rectly labeled, the total number of frames which the system
will leave to the expert to inspect is approximately
30 + 0.1 · 19,970 = 2027. A lower acceptable FP rate,
e.g., 0.05, will leave just over 1000 frames for inspection.
Thus, in such a heavily imbalanced problem, the inspection
time will depend exclusively upon the false positive rate.
The interpretation of the shaded horizontal stripe is trivial:
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its height measures the amount of accuracy we are pre-
pared to sacrifice. In the example in Fig. 3, we accept at
least 90% True Positive, i.e., the maximum number of
missed contractions in the example above should be three
or less.

Classifiers that perform best in one area may not be the
best in the other area. As the plot shows the decision tree
classifier is very good for the accuracy optimization, while
the Parzen classifier is more successful for minimization of
visualization time. The hybrid ensemble outperforms both
which re-confirms the well accepted now claim that ensem-
bles are superior to single classifiers.

Bagging ensemble was constructed from 25 decision
trees as the base classifiers, with a resulting AUC =
0.9647. Fig. 4(a) shows the ROC curves for the bagging
ensemble and the best heterogeneous ensemble at TP rate
of 98% (accuracy zone). The best hybrid ensemble for this
zone appeared to be the one consisting of a decision tree
and 10-NN, with AUC = 0.9599. Bagging shows superior
performance at the point of entering this zone. The hetero-
geneous ensemble outperforms bagging for FP rate over
50% which renders large inspection time. The same analysis
was applied for TP rate of 80% and the result is plotted in
Fig. 4(b). In this case, the best heterogeneous ensemble
consists of a decision tree, 1-NN and 5-NN, with an
AUC = 0.9591. The bagging ensemble only slightly outper-
forms this ensemble at the desired point. In contrast to the
previous case, the heterogeneous ensemble is better for low
accuracy rates, e.g., under 70%. Even by small differences,
Fig. 4(b) favors the bagging ensemble as the best classifier
for both operation points.

Since the main objective of this study is to look for a
compromise between inspection time and accuracy, we sug-
gest a variant of the ROC curve. On the x-axis we plot the
inspection time required and on the y-axis, the sensitivity of
the classification. The inspection time is calculated in the
following way: The output of a classifier is a set of frames
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Fig. 4. Bagging (solid) versus best ensemble (dashed) for each zone of interes
sensitivity optimization area. (b) Bagging versus hybrid ensemble (decision tre
with suspected contractions (true positive and false positive
classifications). Each frame must be visualized as a middle
frame in the sequence of nine frames in order to create the
dynamic impression. The typical visualization rate is 5
frames per second. That implies 1.8 s for each sequence
(i.e., for each output frame), and a bound of 2 s can be
used. The total visualization time for one video will be,
therefore, the number of output frames multiplied by 2.
The x-axis is close to but not a mere rescaling of the FP
rate. Consider a thresholded video of 5000 frames with
an estimated number of 30 contractions in it. Take an
(x,y) point from the standard ROC curve. To calculate
the corresponding x 0 on our ROC variant, we use
x 0 = (4970x + 30y) · 2.

We used the best ROC curve for any point, so different
classifiers are responsible for different parts of the curve.
This was done in the following way. Suppose that the
ROC curves for all classifiers and ensembles are drawn
on the same plot. For each value of FP we selected the
curve with the maximum TP (the highest curve). In differ-
ent parts of the ROC curve, different classifiers or ensem-
bles might be the best. A system operating in a real
environment should keep the collection of classifiers and
ensembles which make up the overall ‘‘best’’ ROC curve.
The operation point selected by the physician will translate
into running the classifier or the ensemble responsible for
this point.

Fig. 5 shows the ROC variant (solid line). Two more
ensemble ROC curves are shown for comparison, demon-
strating that both ROC curves are inferior to the combined
one. Table 2, shows a summary of the results for TP accu-
racy and visualization time. For the MANUAL method,
time is calculated assuming that the physician inspects
the video at 5 frames per second. For the rest of the cases,
time is calculated as explained above. For 80% sensitivity,
only 9 min and 10 s are needed, while 67 min are needed for
manual labelling.
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e, k-NN-1 and k-N-5) in the time optimization area.
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Fig. 5. The time-accuracy variant of ROC curve (solid line). TP are
plotted against visualization time. For comparison, two more ensemble
curves are shown: (i) bagging (dashed line) and (ii) decision tree, 1-NN and
5-NN (dotted line).

Table 2
Analysis of a 20,000-frame video with 30 contractions

Method Positives # Frames Visualization time

MANUAL 30 (100%) 20,000 1 h 7 min
Threshold 29 (99%) 5000 2 h 45 min
98% Detection 28 (98%) 500 16 min 40 s
80% Detection 23 (80%) 275 9 min 10 s
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4. Conclusions and further research directions

In this work, we show that ROC analysis shortens sig-
nificantly the time required for a qualified professional to
inspect videos of intestinal wireless capsule endoscopy with
a minimal loss of performance. We tested eight single clas-
sifiers, a hybrid ensemble model based on all combinations
of these (247 ensembles) and a bagging ensemble of 25 deci-
sion trees. The best model according to the AUC criterion
was the bagging ensemble. As we were interested in finding
a compromise between accuracy and inspection time, a var-
iant of a ROC curve was designed plotting the best achiev-
able sensitivity versus inspection time. Operation points
can be picked from this curve, which offer significant reduc-
tion of the inspection time with reasonable sensitivity.

This methodology can be applied to other types of
intestinal findings (different types of contractions, ulcera,
tumors, etc.).

Future plans are focused on feature selection, feature
extraction and especially developing new features. Pattern
recognition literature abounds with exquisite and powerful
feature selection and extraction methods (Aha and Bank-
ert, 1995; Blum and Langley, 1997; Dash and Liu, 1997;
Jain and Zongker, 1997; Scott et al., 1998), which should
be carefully examined for their suitability for imbalanced
problems. We expect that collaboration with domain
experts will help us design new features which account
for a number of subtleties used by the experts to identify
a contraction.
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