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The aim of online clustering is to discover a structure in running data. Adding label constraints or pairwise
constraints to this has shown to improve the clustering accuracy. In this study we present an analysis of
how different hyperparameters – proportion of constraints, initial number of clusters, and batch window size
– affect most recent and popular online constrained clustering methods, using three different metrics. Our
results show that initial number of clusters and window size have an effect on clustering results, while the
proportion of constraints does not. We also demonstrate that online clustering performs better than clustering
of the whole data together. Our overall findings point at the need for new, more effective online constrained
clustering methods.
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1 INTRODUCTION
Object re-identification in videos is an ongoing challenge. In order to reduce the need for manual
processing of video data, automated methods have been formulated, based on clustering and
classification. Most of the work thus far has been focused on people face detection and vehicle
detection [14, 23, 24, 34]. Object Classification relies on a pre-trained model which determines
the identity of an object based on what it has been trained to detect. Object Clustering is used
where training of a bespoke model is impractical or unfeasible, by instead partitioning the data
into clusters which are collated based on some pre-defined features.
We will be focusing on clustering, specifically Online Constrained Clustering. This method has

two additions to ‘plain’ clustering - processing the data in batches, and integrating constraint-based
knowledge about the data to supplement the partitioning process. This in turn adds two advantages
to the original method - the ability to cluster the data in real time, and having the option of aiding
the algorithm to achieve a better clustering of the data. While online constrained clustering has been
applied (albeit without an explicit formulation) in re-identification faces in well-structured videos
such as TV clips [3, 5, 16], to the best of our knowledge, there are no studies on online constrained
clustering of unrestricted animal videos. In this study we offer such an experiment using a publicly
available video database. The videos are not restricted, which means that there are no defined
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‘shots’, and no requirement that the camera is static. Since there are no mainstream models for
online constrained clustering, we adapt the existing method for human face re-identification, and
add versions of online COP-Kmeans and online constrained single linkage. Our main aim is to
find out how these methods compare to one another and to three trivial (baseline) methods on the
animal video. To this end, we carry out an experimental study by varying three parameters: the
initial number of clusters, the moving window size, and the number of pairwise constraints.
The rest of this study is organised as follows. Section 2 contains a detailed review of current

literature on constrained clustering, online constrained clustering and their applications. In Section 3,
we discuss the methodology of the study, which includes a brief description of the datasets used (3.1),
the methods used (3.2), the metrics used to evaluate our experiment (3.3), as well as the experimental
setup (3.4). Finally, the results are presented in Section 4.

2 RELATEDWORK
Constrained Clustering (CC) is a field which has grown considerably in recent years [11]. Online
Constrained Clustering (Online CC), is the focus of this study. In this method, also known as
Sequential or Incremental CC, data comes in as a stream or batch and is clustered as such, rather
than as a whole like in standard CC.

Online CC has been used in video [5, 10, 16, 21], still images [9, 35], and on synthetic data [2, 12,
26]. For comparison, we also discuss some standard, offline CC algorithms [3, 25, 28], as well as
some unconstrained online clustering methods.

CC has an edge over regular unconstrained clustering as it supports the partitioning by providing
the algorithm with some knowledge that we may already have on the data. This knowledge usually
comes in the form of pairwise constraints, i.e. must-link (ML) and cannot-link (CL) constraints [7,
20, 31]. The first shows pairs of objects which belong in the same cluster, e.g., those in an adjacent
video frames whose bounding boxes overlap [16]. The latter represents pairs of objects that cannot
be in the same partition, e.g., two objects in the same video frame for whom it is impossible to have
the same identity. This example is known as a temporal constraint and can be used for evolving
data [25]. Arbitrarily shaped classes in high-dimensional spaces which cannot be clustered well
using traditional methods, will also benefit from any prior knowledge [3]. CC has been used,
amongst other fields, in face tracking [28], political analysis [25], and vehicle routing [1].
Online clustering is also effective over regular clustering as it clusters objects in their most

recent state. For example, as objects move across a video, their general appearance may change
significantly after a number of frames. There is thus an argument that the object’s former appearance
will not help achieve a higher accuracy when the clustering is performed on the overall dataset,
and therefore could lead to the same object at different time intervals being assigned to different
clusters [4]. Another argument for online clustering is that one can expect a higher certainty of
assigning a smaller number of points to an existing cluster [18]. Certain benefits can be associated
with online clustering such as increased speed; scalability to larger datasets as only parts of the
data are used at one time; discovery of arbitrarily shaped clusters; and better handling of outliers.
Applications include face detection [22], text analysis on social media [8], network flows, and
analysis of sensor data [6].
Online constrained clustering has been applied to text and object identification [9, 25, 35], and

face tracking [5, 10, 16, 21]. Although Rizoiu et al. [25] do not propose a strictly online approach,
the constraint selection is performed in an online way. Some online CC methods adapt existing CC
methods to take in a data as a batch or datastream [2, 25], while others developed new methods [16].
In view of the lack of studies on online CC for animal re-identification from video, here we

carry out an experiment on a database of five unrestricted animal videos. We adapt existing CC
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(a) Koi fish (b) Pigeons (Ground) (c) Pigeons (Kerb)

(d) Pigeons (Square) (e) Pigs (f) Example bounding box

Fig. 1. The video datasets used in the study (a) – (e), and an example of a bounding box, (f).

methods to fit the online framework and use directly an existing Online CC method for human
face re-identification.

3 METHODOLOGY
This section describes the data used, the online CC methods, the evaluation metrics, as well as how
the experiment is carried out.

3.1 Data
The dataset used in this study consists of feature sets from five videos of animals including koi
fish (9 identities); pigeons on the ground (17 identities), a kerb (16 identities), and a square (28
identities); and pigs (26 identities). Fig. 1 shows sample frames from the dataset 1, as well as an
example of a bounding box containing one animal. The videos’ lengths range from 300-600 frames
(9-24 seconds) with frame rates between 24-30 fps. From each video, each animal in every frame
was extracted to a unique bounding box. Initially, we extracted different types of features from each
bounding box: RGB moments; the code layer of 10 nodes from an autoencoder neural network, the
histograms of oriented gradients (HOG), the local binary patterns (LBP), and the 4096 outputs of
the penultimate layer of an MobileNetV2 neural network. The features used in this study are the
RGB moments, as these proved to be the best set in a previous study [17]. The features are saved in
.csv format as an 𝑁 × 54 matrix, i.e. every 𝑁 th object contains the mean (𝜇) and standard deviation
(𝜎) for each RGB colour value, where each bounding box has been split into a 3-by-3 block. Fig. 2
shows the RGB means and standard deviations of the 9 parts of the bounding box displayed in
Fig. 1f.
Ground truth labels are available for each video. These were obtained by manual annotation.

Bounding boxes were outlined and labelled in each frame. Subsequently, features were extracted
from the bounding boxes.

1Dataset available at https://zenodo.org/record/7322821
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(a) 𝜇 for the three colour spaces (b) 𝜎 for the three colour spaces

Fig. 2. An example of the 54 extracted RGB colour values from the bounding box in Fig. 1f.

3.2 Clustering Methods
We have used popular and recent methods, as well as three ‘baseline’ methods for comparison.
Since the online constrained COP-Kmeans and the online constrained Single Linkage had to be
adapted here, we explain them in more detail.

3.2.1 KG Algorithm. This method is an online constrained face clustering algorithm which clusters
tracks of faces in videos, in this paper named KG after its authors (Kulshreshtha and Guha) [16].
This is done by first separating the video into ‘shots’ of consecutive frames. Within each shot, tracks
of faces are created by grouping detections with an overlap of a predefined threshold in adjacent
frames. The tracks are then clustered through the use of a similarity matrix which compares and
assigns each track to a suitable cluster centre or, if necessary, creates a new cluster.

3.2.2 Online COP-Kmeans (OCC-Kmeans). Constrained K-means is one of the first implementations
of a clustering algorithm incorporating background knowledge [29, 31]. COP-Kmeans works like
standard K-means with the exception of the pairwise constraints having to be satisfied before the
point is assigned to the nearest cluster. If no such cluster exists, the algorithm stops.
In the online version that we created here, we apply the method to each window. The initial

centres in the very first window are the first 𝑘 points in the window. Denote the current cluster
centres by𝐶𝐶 . We are using𝐶𝐶 returned from the previous window as initial centres for the current
window. Denote the new centres obtained by standard COP-Kmeans for the current window by
𝐶𝐶′. The current centres to be returned are updated as𝐶𝐶 ← (𝐶𝐶 +𝐶𝐶′)/2. The algorithm returns
the labels assigned progressively throughout the online procedure.

3.2.3 Online Single Linkage (OCC-SL). Several methods for constrained hierarchical clustering
have been proposed in recent years [19, 32, 33]. However, as we have not been able to identify a
suitable online constrained clustering single linkage method, we offer an intuitive adaptation of our
own. In the first window, we create an initial partition by finding the transitive closure of the ML
constraints and subsequently applying COP-Kmeans using the pre-specified number of clusters
𝑘 . The transitive closure is calculated by creating a graph of all objects with edges corresponding
to the ML constraints, and then finding the connected components of the graph. We can think of
these connected components as ‘tracks’ in the window composed of several frames of the video. To
apply the OCC-SL method, we used the following steps:
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(1) Find the tracks in the first window and apply COP-Kmeans using the pre-specified number
of clusters 𝑘 . Denote the current partition by𝑊 .

(2) For each subsequent window
(a) Find the tracks in the window. These will be the clusters that need to be assigned using𝑊

as the reference structure. Each single object that does not belong to a track, is a cluster of
its own. Denote the partition of the current window by𝑊 ′.

(b) For each cluster in𝑊 ′, find the closest cluster in𝑊 . If the assignment does not violate any
CL constraints, label all points in that cluster accordingly and add them to the reference
set𝑊 . If there is CL constraint violation, apply the same check to the next closest cluster.
Continue until a cluster from𝑊 accepts the current cluster from𝑊 ′, or there are no
remaining clusters in𝑊 ′ to check. If an accepting cluster cannot be identified, create a
new cluster and add it to𝑊 .

(c) Retain only the points from the current window as the new𝑊 .
(3) Return the labels assigned progressively throughout the online procedure.

3.2.4 Baseline Methods. In addition to the above methods, we used three baseline methods to
verify that online constrained clustering works better than trivial labelling and chance. These are
called Baseline “same”, “different” and “random”. These methods return the cluster labels as follows:
• Same ◦ All objects are labelled as one cluster. ◦ Returns an 𝑁 × 1 matrix of the same value,
e.g. ‘1’
• Different ◦ Every object is a cluster of its own ◦ Returns an 𝑁 × 1 matrix containing the
values 1 . . . 𝑁
• Random ◦ For each sliding window, every object is assigned a random cluster label. ◦ Returns
an 𝑁 × 1 matrix of random integers within {1, . . . ,𝑤𝑠}, where𝑤𝑠 is the window size.

3.3 Metrics
In order to gauge the quality of the six methods, the following metrics have been utilised.

3.3.1 Normalised Mutual Information. NMI calculates the common information between two sets
of labels, e.g. the assigned labels (𝑈 ) and true labels (𝑉 ) [27, 30]. The entropies of partitions𝑈 and
𝑉 are calculated as:

𝐻 (𝑋 ) = −
∑︁
𝑥∈𝑋

𝑝 (𝑥) log𝑝 (𝑥) (1)

where 𝑝 (𝑥) is the probability that object 𝑥 from the set of 𝑁 data points falls into cluster 𝑋 , defined
as:

𝑝 (𝑥) = |𝑋 |
𝑁

(2)

From this, the mutual information can be calculated using:

𝐼 (𝑈 ,𝑉 ) =
∑︁
𝑢∈𝑈

∑︁
𝑣∈𝑉

𝑝 (𝑢, 𝑣) log 𝑝 (𝑢, 𝑣)
𝑝 (𝑢) × 𝑝 (𝑣) (3)

This score is normalised as there is no upper bound to the mutual information calculation:

𝑁𝑀𝐼 (𝑈 ,𝑉 ) = 𝐼 (𝑈 ,𝑉 )√︁
𝐻 (𝑈 ) × 𝐻 (𝑉 )

(4)

A higher score is more desirable, i.e. 0 shows no similarity between the clusters, while 1 shows a
perfect match.

5



SPRA 2023, December 01–03, 2023, Napoli, Italy F.J. Williams and L.I. Kuncheva

3.3.2 Adjusted Rand Index. The Rand Index is calculated by tallying up all of
(
𝑁
2
)
pairs of object

labels in the assigned labels and in the true labels by putting them into four categories [13, 30]:

𝑁11 Pair of objects is in the same cluster in both𝑈 and 𝑉
𝑁01 Pair of objects is in the same cluster in𝑈 but in different clusters in 𝑉
𝑁10 Pair of objects is in different clusters in𝑈 but in the same cluster in 𝑉
𝑁00 Pair of objects is in different clusters in both𝑈 and 𝑉

The Rand Index is calculated using:

𝑅𝐼 (𝑈 ,𝑉 ) = (𝑁00 + 𝑁11)/
(
𝑁

2

)
(5)

To correct for chance, the Adjusted Rand index is calculated as follows:

𝐴𝑅𝐼 (𝑈 ,𝑉 ) = 𝑅𝐼 (𝑈 ,𝑉 ) − 𝐸𝑅𝐼 (𝑈 ,𝑉 )
1 − 𝐸𝑅𝐼 (𝑈 ,𝑉 ) , (6)

where 𝐸𝑅𝐼 (𝑈 ,𝑉 ) is the expected value of the Rand index:

𝐸𝑅𝐼 (𝑈 ,𝑉 ) =
∑

𝑖 (𝑈 )
(
𝑛𝑖
2
)
×∑𝑗 (𝑉 )

(𝑛 𝑗

2
)(

𝑁
2
) , (7)

where 𝑛𝑝 is the number of objects in cluster 𝑝 in the respective partition.

3.3.3 Classification Accuracy. There are two versions of classification accuracy that have been
considered here. We refer to them as ‘Count’ and ‘Hungarian’. Denote again the assigned labels by
𝑈 and true labels by 𝑉 .

In the ‘Count’ version, we inspect the true labels in each cluster in𝑈 , and match this cluster to
the cluster in 𝑉 where the majority of the objects belong. With this method, many clusters in 𝑈
can be matched to the same cluster from 𝑉 .

In the ‘Hungarian’ version, an optimal assignment is calculated, where one-to-one matching is
enforced. We used the Munkres algorithm [15], which allows for different number of clusters in𝑈
and 𝑉 . The unassigned labels in𝑈 are counted as errors.

While 𝑁𝑀𝐼 and 𝐴𝑅𝐼 are symmetrical with respect to the two partitions, neither of the two ver-
sions of the Classification Accuracy is. Between the two, we chose the ‘Hungarian’ version because
the ‘Count’ version strongly favours large number of clusters in 𝑈 , thereby giving inadequate
results when the number of clusters differs significantly between𝑈 and 𝑉 .

3.4 Experiment Setup
The purpose of the experiment is to determine: (1) Which of the compared methods for online
CC fares the best on animal re-identification for our data collection; (2) What combination of
hyper-parameters works best for each video and across videos. The hyper-parameters we examined
here are:
• 𝑘 – initial number of clusters
• 𝑤𝑠 – the window size (number of video frames)
• 𝛾 – proportion of constraints relative to the number of objects in the window.

The moving window ‘skips’𝑤𝑠 frames, so consecutive windows are non-overlapping. By using a
fixed number of video frames in a moving window, we allow for different number of objects in
each window. This depends on how many animals are present simultaneously in each frame.
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The ML constraints are sampled from a total pool of ML constraints obtained in the following
way: Find the IoU overlap between each pair of bounding boxed in consecutive frames. All pairs
with IoU larger than 0.5 are considered to be ML pairs. The set of CL constraints contains all pairs
of objects which are in the same frame.

In order to find the optimum values of 𝑘 ,𝑤𝑠 and 𝛾 , we have to iterate through all the parameters
and run the methods with each combination. The sets of hyper-parameter values were:

(1) 𝑘 = [5, 8, 11, 13, 16, 19, 22, 24, 27, 30]
(2) 𝑤𝑠 = [3, 6, 9, 12, 15, 18, 21, 24, 27, 30]
(3) 𝛾 = [0.0, 0.1, 0.3, 0.5, 0.7, 0.9]

These values have been chosen because: (1) they contain interval values encompassing the
minimum and maximum number of identities (9 - 28); (2) each video has a relatively small number
of frames, thus a range of smaller window sizes is used; (3) we included in the 𝛾 set a proportion of
0, which will give us another baseline – the plain online CC without any constraints.

To calculate the three metrics, we used the ground truth labels for each video.
MATLAB code is available on GitHub 2.

4 RESULTS
4.1 Best combination of parameters
Table 1 show the highest NMI, ARI, and HCA for each video. The columns contain the optimal 𝑘𝑖𝑛𝑖 ,
the resulting (𝑘𝑙𝑎𝑠𝑡 ) number of clusters, the optimal window size (𝑤𝑠), the optimal proportion of
constraints (𝛾 ), the corresponding metric score, the optimal method. For further information we
include the average number of clusters per frame (𝑘𝑎𝑣𝑒 /frame) and window (𝑘𝑎𝑣𝑒 /window) for the
respective𝑤𝑠 , both calculated from the ground truth labels. We can see that a high value of 𝑘 is
preferred in the data, and a low 𝑤𝑠 is optimal across the board; however, a definite observation
cannot be made for 𝛾 .
An interesting observation in the table is that the resulting number of clusters for the Pigeons

(Kerb) and Pigs videos is similar to the true value for all the metrics. In comparison, the same values
are far off for other videos. This shows that the methods used do not split and merge the clusters
well on all datasets.

4.2 Comparison between the online constrained clustering methods
Fig. 3 shows the results for the three chosen metrics against the plane spanned by 𝑘 and𝑤𝑠 , for
the five videos. The three clustering methods and the three baselines are shown as surfaces of
different colours. The surfaces are averaged across the values of the constraint proportion 𝛾 . This
was deemed acceptable because of the very small variation of the values for different 𝛾 . The figure
leads to the following observations:

• The surfaces are not flat, which suggests that the combination of parameters 𝑘 and𝑤𝑠 has an
effect on the quality of the clustering results, as measured by all three metrics.
• There is no single clustering method which dominates the others for all videos. Interestingly,
for different combinations of (𝑘,𝑤𝑠), different clustering methods may be more successful,
as seen for video Pigeons (Ground) in the figure. OCC-SL was the worst of the three online
constrained clustering methods. This is backed up in Table 1, which shows that the KG
method works best for the Koi video, while OCC-Kmeans works best for the remainder of
the videos.

2MATLAB code available at https://github.com/frankmnb/Hyperparameter-Analysis-in-Online-Constrained-Clustering
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Table 1. Best combinations of hyperparameters for all videos and methods. For comparison, the bold number
in brackets in column 𝑘last shows the expected number of clusters.

NMI
Video 𝑘ini 𝑘last 𝑤𝑠 𝛾 Score Method 𝑘ave 𝑘ave

/frame /window
Koi 11 11 (9) 3 0.1 0.69 KG 3.05 3.07

Pigeons (Ground) 27 24 (17) 6 0 0.44 KG 5.13 5.17
Pigeons (Kerb) 27 12 (16) 3 0 0.58 OCC-Kmeans 10.61 10.85

Pigeons (Square) 30 12 (28) 3 0 0.65 OCC-Kmeans 16.31 16.42
Pigs 30 24 (26) 6 0 0.55 OCC-Kmeans 12.37 12.39

ARI
Video 𝑘ini 𝑘last 𝑤𝑠 𝛾 Score Method 𝑘ave 𝑘ave

/frame /window
Koi 11 11 (9) 3 0.1 0.56 KG 3.05 3.07

Pigeons (Ground) 8 8 (17) 3 0.5 0.23 OCC-Kmeans 5.13 5.17
Pigeons (Kerb) 30 12 (16) 6 0 0.40 OCC-Kmeans 10.61 10.85

Pigeons (Square) 30 12 (28) 3 0 0.42 OCC-Kmeans 16.31 16.42
Pigs 30 24 (26) 6 0 0.39 OCC-Kmeans 12.37 12.39

HCA
Video 𝑘ini 𝑘last 𝑤𝑠 𝛾 Score Method 𝑘ave 𝑘ave

/frame /window
Koi 22 22 (9) 6 0.7 0.69 KG 3.05 3.11

Pigeons (Ground) 8 8 (17) 6 0 0.40 OCC-Kmeans 5.13 5.17
Pigeons (Kerb) 27 12 (16) 3 0 0.51 OCC-Kmeans 10.61 10.85

Pigeons (Square) 30 12 (28) 3 0 0.54 OCC-Kmeans 16.31 16.42
Pigs 30 24 (26) 6 0 0.50 OCC-Kmeans 12.37 12.39

• As expected, the three three methods are substantially better than the three baseline methods
for all datasets.

For comparison, Table 2 shows the optimum metrics for the offline versions of K-Means and
Single Linkage versus the optimum metrics for the online algorithms with 𝛾 = 0. Due to their
offline and unconstrained nature the only tunable parameter is 𝑘 . The same values of 𝑘 have been
used as in the remainder of the experiment. Both methods have been calculated using the built in
functions in MATLAB, and evaluated using the three metrics. The table shows that, in the best case,
the online algorithms outperform the offline algorithms for all videos. Generally, we would expect
a better clustering result from the whole data; however, here we can see that the online component
has a positive impact on the results.
It can also be observed from Fig. 3, that the three clustering methods have different surface

patterns in the (𝑘,𝑤𝑠) space. The pattern, however, are similar across the different metrics and the
different videos. To explore this issue further, we pooled the results for each clustering method
using only one of the metrics (NMI). Fig. 4 shows the three methods separately, where each plot
contains the NMI surfaces for the five videos.
Since the raw values of any metric are non commensurable between datasets, we calculated

instead the ranks of the values in the 10-by-10 matrix (𝑘,𝑤𝑠). The 100 raw NMI values for a given
video and method were ranked and then replaced by their ranks. Thus, the best combination of

8



Effects of hyper-parameters in online constrained clustering SPRA 2023, December 01–03, 2023, Napoli, Italy

Koi

Pigeons (Ground)

Pigeons (Kerb)

Pigeons (Square)

Pigs

KG, OCC-Kmeans, OCC-SL, Baseline “same”, Baseline “different”,
Baseline “random”.

Fig. 3. Results for the three chosen metrics against the plane spanned by 𝑘 and𝑤𝑠 , for the five videos. The
three clustering methods and the three baselines are shown as surfaces of different colours.
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Table 2. Comparison of offline (ALL) versus online (𝛾 = 0) clustering (non-constrained) for the five videos
for the three metrics.𝑚 is the value of the respective metric. 𝑘 and𝑤𝑠 are the best parameter values for the
non-constrained clustering methods.

NMI ARI HCA
ALL 𝛾 = 0 ALL 𝛾 = 0 ALL 𝛾 = 0

Video 𝑘 𝑚 𝑘 𝑤𝑠 𝑚 𝑘 𝑚 𝑘 𝑤𝑠 𝑚 𝑘 𝑚 𝑘 𝑤𝑠 𝑚

Koi 30 0.48 11 3 0.67 30 0.19 11 3 0.52 13 0.35 11 3 0.64
Pigeons (Ground) 30 0.33 27 6 0.44 24 0.11 8 3 0.23 11 0.28 8 3 0.40

Pigeons (Kerb) 30 0.39 27 3 0.58 27 0.18 27 3 0.40 16 0.35 27 3 0.51
Pigeons (Square) 27 0.54 30 3 0.65 27 0.32 30 3 0.42 22 0.45 30 3 0.54

Pigs 30 0.40 30 6 0.55 16 0.17 30 6 0.39 16 0.31 30 6 0.50

(a) KG (b) OCC-Kmeans (c) OCC-SL

Fig. 4. NMI ranks for the three clustering methods. Each plot in the top row contains five transparent surfaces
of NMI ranks corresponding to the 5 videos, and one solid surface, which is the average rank. The heat map
corresponds to the average rank surface.

(𝑘,𝑤𝑠) will always receive value of 100, regardless of the video, and the worst combination will
receive rank 1. Subsequently, we plotted the ranks for the three methods. In each plot, we show
transparent surfaces for the individual videos and a single solid colour as the average rank surface.
Under each 3D plot, we show the flat surface where yellow corresponds to large values (preferable)
and dark blue, to low values.

The figure shows that KG and OCC-Kmeans are not as affected by window size as OCC-SL. For
the former, a lower value of𝑤𝑠 is preferred, but a mid value is also acceptable. For the latter, we
can see that the method performs best when both the values of 𝑘 and𝑤𝑠 are high. For the value of
𝑘 , on the other hand, one can see a clear correlation between higher accuracy and higher initial
value of clusters.
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(a) 𝛾 = 0.1, KG (b) 𝛾 = 0.1, OCC-Kmeans (c) 𝛾 = 0.1, OCC-SL

(d) 𝛾 = 0.9, KG (e) 𝛾 = 0.9, OCC-Kmeans (f) 𝛾 = 0.9, OCC-SL

Fig. 5. Heat maps for the NMI ranks for the three clustering methods for two different values of 𝛾 .

4.3 Effect of the number of constraints
Here we ask the question whether the number of constraints (represented by proportion 𝛾 ) has an
effect on the optimal combination of parameters (𝑘,𝑤𝑠). Observing that the three metrics behave
similarly, we chose to use only NMI for this part of the study. To answer the question, we plot a
heatmap of NMI in the space spanned by (𝑘,𝑤𝑠), for values of 𝛾 0.1 and 0.9. Fig. 5 shows the results.
Each heat map in the figure is calculated by averaging the NMI ranks of the 5 videos for the

respective 𝛾 . It can be seen that there is minimal difference between the plots for the different
values of 𝛾 , which suggests that the number of constraints does not affect our recommendation of
the optimal parameter combination.
We observed that in our experiment, the number of constraints did not have much effect on

the quality of the clustering method. To visualise this statement, we include Fig. 6. The expected
tendency was that increasing the number of constraints will improve the values of the metrics.
Interestingly, our metrics show that increasing the number of constraints has the opposite, or very
little, effect. More advanced future online constrained clustering methods may make better use of
the constraints, which may change the parameter landscape.

5 CONCLUSION
Here we examine online constrained clustering applied to re-identify animals from video. Our
experiment compared three online CC methods: KG, OCC-Kmeans, and OCC-SL. We are interested
in how parameter choices affect the clustering results.
Curiously, we found that the number of constraints (𝛾 ) does not have an impact on the result.

Contrary to expectation, the clustering accuracy did not improve with increasing the number
of constraints for any of the videos, methods or metrics. This points at the need for new, more

11
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(a) Normalised Mutual Information (b) Adjusted Rand Index

(c) Classification Accuracy

Fig. 6. Plots of the metrics for each value of 𝛾 per method (opaque) and the method averages (bold).

advanced and effective, online constrained clustering methods. On the other hand, a combination of
the number of clusters 𝑘 and window size𝑤𝑠 jointly affect the outcome. The preferred combination
of values was found to be small𝑤𝑠 and large 𝑘 for KG and OCC-Kmeans, and large𝑤𝑠 with large 𝑘
for OCC-SL.

Our comparison of offline and our online methods with no constraints shows that adding a time
component to the clustering has a positive effect on the results, even if the proportion of constraints
does not.
The experimental results show that, in most cases, the resulting number of clusters in the

optimum combinations of parameters does not match closely the true number of clusters in the
ground truth. This shows that the methods are not sufficiently good at splitting and merging
clusters.
Our future line of research includes modifications to the methods examined in this study or

developing new methods that will be adequately equipped to adjust the number of clusters. We
will be looking at online constrained Gaussian mixture modelling as well as more robust versions
of hierarchical online constrained clustering.
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