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Abstract—Unsupervised classification of data is an ongoing
challenge in many areas. With evolving stream data, hierar-
chical clustering methods have proved effective, especially with
non-spherical clusters. Additionally, incorporating pairwise con-
straints has been shown to further improve clustering accuracy.

We propose a cluster ensemble using constrained hierarchical
methods. The experiment was performed on a collection of 52
Synthetic and 96 Real datasets.

Our analysis shows that our constrained cluster ensemble
method results in a high accuracy across various proportions
of constraints without sacrificing speed.
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I. INTRODUCTION

Object classification within images and video is an ongoing
challenge in many fields [1], [2], [3]. Annotating images and
labelling the data within is a tedious task which takes countless
man-hours if performed manually. In recent years, with the
development of smart technologies, the search for automated
object classification methods has been a continuous pursuit.
Object clustering is a form of unsupervised learning, in which
previously unseen data are grouped based on similar attributes.

Real-life datasets often include stream data, such as videos.
As the data evolves in adjacent frames, a minor change is
expected to an object’s appearance and, thus, to its feature
representation. This leads to the assumption that the data will
produce string-shaped clusters. On the other hand, an object
that appears several times in the video data may give rise to
multiple string-shaped clusters in possibly distinct parts of the
feature space. For example, in recognising faces in video, there
may be a cluster of points coming from a frontal-view shot,
and another cluster where the face is in profile [4]. As the two
views will have very different feature representations, the two
clusters for the same identity will be in different parts of the
feature space.

Unlike standard clustering tasks, object clustering from
video allows for using additional information in the form of
constraints. Typically, these are pairwise constraints: must-
link (ML) constraints, where two objects have to belong to
the same cluster, and cannot-link (CL) constraints, where two
objects must not be in the same cluster. Constrained clustering

(CC) has been developed to incorporate additional information
about the data into standard clustering algorithms [5], [6], [7].

Current comparisons of CC methods do not specifically
address the type of the data being clustered. Most comparisons
rely on benchmark Real data sourced from well-established
repositories. It is well-known that such data feature largely
hyper-spherical clusters with good correspondence to class
labels. Centroid-based clustering methods would be a good
fit for such data.

For the type of data we are considering here, hierarchical
clustering is more likely to produce good results. Success-
ful hierarchical methods for CC have been summarised by
Gonzalez-Almagro et al [5]. However, most of these require
human intervention or a form of active learning. We are
interested in an automatic hierarchical method for constrained
clustering with a view to extend it to online clustering in the
future.

Years of research on clustering have led to the observation
that, generally, cluster ensembles are more successful than
single clusterers [8], [9], [10]. We propose a clustering ensem-
ble comprised of elementary semi-supervised agglomerative
hierarchical methods. To demonstrate the advantages of our
method, we ran a large experimental evaluation on our bespoke
collection of 52 Synthetic datasets sourced from the literature
on clustering, and 96 Real datasets from the KEEL-dataset
repository [11].

The rest of the paper is organised as follows. Section II dis-
cusses related constrained clustering and ensemble solutions.
Section III details our proposed method. Section IV describes
our experiment and Section V shows the results. Finally, we
offer our conclusions in Section VI.

II. RELATED WORK

CC methods have emerged as powerful tools in machine
learning and data analysis, offering the ability to incorporate
domain knowledge in the form of constraints to guide the
clustering process [12], [13], [14].

The integration of constraints in hierarchical clustering
methods (HCC) has been the focus of various studies, accom-
modating a range of applications [12], [15]. One advantage of
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HCC is its ability to cluster non-spherical data more accurately
where centroid-based methods such as k-means could not
produce an adequate partition [16]. Many applications of HCC
are active methods, where an oracle is consulted to determine
which constraint applies to a pair of instances [14], [17],
[18], [19]. Such methods are not suited to our needs, as we
are interested in fully autonomous methods. Other methods
take different approaches to incorporating constraints, such
as through cost functions [13], distance metrics [20], [21],
and restricting constraints to certain parts of the hierarchical
structure [7].

Meanwhile, cluster ensembles offer several advantages over
single clustering methods due to their ability to harness the
collective intelligence of multiple clustering algorithms. By
aggregating diverse clustering solutions, ensembles can miti-
gate the limitations of individual algorithms, such as sensitivity
to initialisation, parameter settings, and data characteristics.
Moreover, ensembles inherently capture a broader range of
data perspectives, leading to enhanced robustness and stability
in the clustering results [8], [9], [10]. The diversity among
ensemble members allows for a more comprehensive explo-
ration of the data space, thereby increasing the likelihood of
identifying complex cluster structures and outliers. Overall,
the ensemble approach results in improved clustering quality,
greater reliability, and enhanced performance across a wide
range of datasets and applications [22], [23], [24], [25], [26].

Combining constraint-based clustering with ensemble meth-
ods has been shown to yield more reliable, accurate, and
meaningful clustering results across a wide range of appli-
cations [27], [28], [29], [30].

Over time, with a growing emphasis on clustering accuracy,
contemporary constrained clustering methods have evolved
to become exceedingly intricate, often at the expense of
speed and transparency. This evolution has rendered them
less suitable for online learning in real-time applications.
In response, we have developed a method that combines
the advantages of constraint-based clustering with those of
ensemble methods, while preserving the simplicity of basic
hierarchical agglomerative clustering and ensuring swift
execution.

III. PROPOSED METHOD

A. Klein, Kamvar and Manning’s Algorithm

To understand the proposed ensemble method, we first detail
Klein et al’s algorithm from [31].

Let X = {x1, . . . , xN} be a dataset of N objects each
described by a feature vector. Two sets of constraints are
defined over X: ML and CL. A pair of objects, i and j,
belongs to ML,(i, j) ∈ ML, if they must share the same
cluster label in the final partition. Conversely, (i, j) ∈ CL,
if they must be assigned to different clusters. Not every
constrained clustering algorithm can guarantee that all the
constraints are satisfied.

Klein et al. proposed that integrating constraints into hierar-
chical clustering methods did not necessitate modifications to
the unsupervised algorithm itself. Due to the inherent charac-
teristics of hierarchical methods, which enable the creation of
a clustering partition from a distance matrix, they could adjust
the distance matrix to accommodate the constraints instead.

First, ML not always represents a full set of constraints.
There may be pairs of objects linked through transitive closure,
which are not present in the original ML. Therefore, we
expand ML into MLa to include all possible pairs that must
be connected through must-link. To this end, we build a
graph with N nodes and place an edge between all pairs of
nodes corresponding to ML. From this graph, we derive the
connected components. For example, if pairs (a, b) and (b, c)
are in ML, the respective connected component of the graph
will contain all three a, b and c. Thus, ML is augmented with
all pairs in each connected component.

Consider a distance matrix MN×N = {aij}, where aij
indicates the distance between points i and j. Constraints
can be incorporated into M by modifying entry aij based on
the constraint between points i and j. If (i, j) ∈ MLa, then
aij = 0; conversely, if (i, j) ∈ CL, then aij =∞.

After adapting the distance matrix to include MLa and
CL, unsupervised hierarchical clustering methods like average
linkage, single linkage, and complete linkage can be employed
on a dataset to produce a partition. The respective variants will
be called in the rest of this paper CAL (Constrained Average
Linkage), CCL (Constrained Complete Linkage), and CSL (
Constrained Single Linkage).

B. Constrained Cluster Ensemble

Our proposed method is an ensemble of our implementation
of the algorithms in Section III-A. We refer to it as CCEN in
the remainder of this paper. The input to the algorithm consists
of: the dataset X , the constraint sets ML and CL, the chosen
constrained clustering base method CCBM , the number of
clusters k, and the number of ensemble members L.

The CCEN algorithm proceeds by initialising an empty
cumulative adjacency matrix CuAd of size N × N . Each
ensemble member will contribute an adjacency matrix that will
be added to CuAd. Thus, the pairs of points which are labelled
together by all ensemble members will have an entry of L
in CuAd. Points which were never linked by any ensemble
member will score a zero in CuAd.

We decided to “recycle” the simple constrained hierarchi-
cal methods from Section III-A by using them as potential
base clusterers. We opted for CAL as the CCBM in our
experiment. Furthermore, to save time, we can run the method
only once, and use the resultant dendrogram to create the
ensemble members. To do so, we cut the dendrogram to arrive
at k, k + 1, . . . , k + L clusters, which represent the output of
the ensemble members.

Once CuAd is complete, we convert it back to cluster
labels. First, we chose to cut the matrix at L

2 . All elements
of CuAd greater than the threshold turn to value 1, and those
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less than or equal to the threshold turn to value 0. The new
ensemble adjacency matrix EnsAd defines a graph, whose
connected components are returned by our CCEN algorithm
as the ensemble cluster labels cl. The steps of this algorithm
are outlined in Algorithm 1.

Algorithm 1 Constrained Cluster Ensemble (CCEN)

Require: X,ML,CL,CCBM, k, L
Ensure: ecl

1: CuAd = [ ]
2: for i in 1, . . . , L do
3: cl← CCBM(X,ML,CL, k + i− 1)
4: ad← adjacency matrix from cl
5: CuAd← CuAd+ ad
6: end for
7: if CuAd(i, j) > L

2 then EnsAd(i, j) = 1
8: elseEnsAd(i, j) = 0
9: end if

10: EnsAd = CuAd > L
2

11: ecl = CONVERT(EnsAd)

IV. EXPERIMENTAL SETUP

A. Data

One of our contributions in this study is a collection of
Synthetic datasets featuring a variety of cluster shapes and
varying levels of clustering difficulty. All datasets have been
used before in publications on clustering. A MATLAB library
for generating the Synthetic datasets is provided on GitHub1.
The Synthetic dataset collection contains 47 2D datasets and 5
3D datasets. A 2D view of all 52 datasets is shows in Figure 1.

The Real dataset collection consists of 96 datasets with a
minimum of 2 classes and a maximum of 26 classes with a
dimensionality from 3 to 262 [11]. For the purposes of our
experiment we capped the number of objects of the datasets
at 1000.

Tables of data names and attributes are available at
https://github.com/frankmnb/Ensemble-hierarchical-method-
for-constrained-clustering.

B. Metrics

Normalised Mutual Information (NMI) and Adjusted Rand
Index (ARI) were used here to compare the obtained cluster
labels with the true labels of the data. NMI(X,Y ) = 0
signifies no relationship between variables X and Y , and
NMI(X,Y ) = 1 indicates perfect relationship between the
two variables. ARI yields a score between -1 and 1, where
a score close to 1 indicates a high degree of agreement
between the clusterings, while a score near 0 suggests random
clustering, and negative scores imply disagreement. ARI is
suitable when the number of clusters varies or when the sizes
of clusters differ.

1Synthetic dataset code available at https://github.com/LucyKuncheva/
Synthetic-datasets-for-classification-and-clustering

Fig. 1: All Synthetic datasets used in the experimental study
visualised in 2-Dimensional space.

C. Experimental Protocol

We experimented with different proportions of constraints
relative to the number of objects N . The proportions we used
were [0, 1, 2, 3, 4, 5, 10, 15, 20]%. For the proportion PC the
number of constraints was calculated as: NC = z(z − 1)/2,
where z = round(N × PC/100).

After determining the number of constraints, we generate
pairs of points (Pi, Pj)1, . . . , (Pi, Pj)NC where i ̸= j and
proceed to identify the nature of the constraints by comparing
the true labels of Pi and Pj . If the true labels for both points
match, they are designated as ML constraints. Conversely, if
they do not belong to the same cluster, they are allocated to
the CL constraint set. We generated 5 different sets of NC
constraints for each value of PC. This was done to account for
the randomness of the constraints. All results are an average
across the 5 constraint sets.

D. Methods

The methods we chose for the experiments are:
• COP-kmeans (COP) [32] – as a baseline
• COP-kmeans - improved (COPI) – this method differs to

the original by comparing the new and old labels between
iterations, rather than comparing the new and old means

• Constrained Spectral Clustering (CSP) – it is not a
centroid-based method, which makes it a candidate for
the task considered in our study

• Complete Average Linkage (CAL)
• Complete Complete Linkage (CCL)
• Complete Single Linkage (CSL)
• Constrained Clustering Ensemble (CCEN)
We deliberately did not include in the comparisons some

recent, successful constrained clustering methods. While be-
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TABLE I: Execution time (in milli-seconds) averaged across repetitions and datasets.

(a) Synthetic Data

PC COP COPI CSP CCL CSL CAL CCEN

0 32 23 1164 8 6 5 12
1 33 29 1051 6 6 5 10
2 29 52 891 6 6 5 10
3 17 88 803 5 6 5 10
4 15 137 834 5 6 5 10
5 13 182 946 5 6 5 10

10 11 474 1254 6 6 6 14
15 11 832 1256 6 6 6 17
20 12 1317 1264 6 6 6 18

(b) Real Data

PC COP COPI CSP CCL CSL CAL CCEN

0 40 39 6624 17 17 16 33
1 56 64 6285 17 18 17 28
2 28 166 6165 17 18 16 28
3 17 342 6403 17 18 16 28
4 15 578 6982 17 18 16 30
5 15 803 7300 17 18 17 32

10 12 2566 7471 18 17 18 39
15 13 5988 7473 18 17 18 41
20 15 10729 7499 18 18 18 41

longing to the hierarchical group, 3SHACC [33] proved to be
too intricate and time-consuming to run in our experimental
setup. Our main focus here is on identifying a fast and un-
complicated potential candidate for future online constrained
clustering. We also dismissed centroid-based methods such as
PCCC [34]. We acknowledge that they may perform well on
spherical data such as our Real data collection.

The code used in the experiment is available on GitHub2.

V. RESULTS

Figure 2 show the ARI and NMI scores for each method
across various proportions of constraints, averaged across the
Synthetic and Real datasets. From these plots, it is evident
that the simpler methods, viz. CAL, CCL and CSL, are more
accurate than COP, COPI, CSP. Moreover, they exhibit pro-
gressive improvement as the number of constraints increases.
Our proposed method, CCEN, enhances the accuracy compared
to the simpler methods across most proportions of constraints,
particularly when applied to the Real datasets.

Table I presents the execution times for the Synthetic and
real datasets, respectively. Simpler clustering methods can pro-
duce a partition much quicker compared to their competitors.
Moreover, their speed remains stable regardless of the number
of pairwise constraints given to the algorithm. Notice that
CCEN does not take much more time than its base method
(CCBM ) - CAL. This makes CCEN the preferred choice for
real-time applications.

Additionally, we carried out an experimental study to find
out whether increasing the number of clusterers in the ensem-
ble has a significant effect. We compared the three hierarchical
variants as base clusterers (CCBM ) for the ensemble. The
same experimental set-up was used as the one detailed above,
with both the Synthetic and Real datasets. The results are
shown in Figure 3. Each plot shows a cluster quality metric as
a function of percentage of constraints, for ensembles of four
different sizes: 1, 2, 4 and 6 clusterers. Smaller ensembles
are shown with smaller markers and in a lighter colour. The
largest ensemble is shown with largest markers. The three
methods are displayed on the same plot to facilitate a visual

2Code available at https://github.com/frankmnb/Ensemble-hierarchical-
method-for-constrained-clustering

comparison between the three candidates for their respective
base clustering methods.

The figures show that larger ensembles are typically better
than the single clusterer (ensemble of size 1), that is CCEN
is better than any of the individual constrained clustering
methods. The only exception is for the small proportion of
constraints for the Synthetic data (Figures 3a and 3c), where
smaller ensembles fared better in the experiments. We also
observe that the difference between ensembles of sizes 4 and
6 is not substantial, which suggests that small ensembles can
be both accurate and efficient for the purposes of future real-
time clustering. The second observation is that CEAL is better
than the others. This is expected, given that CAL was superior
to CCL and CSL, as seen in Figure 2.

VI. CONCLUSION

We introduce a constrained cluster ensemble (CCEN) using
basic hierarchical methods. Our extensive experimental analy-
sis demonstrates accuracy gain, particularly as the number of
constraints increases. Notably, it maintains efficiency suitable
for online and real-time applications.

Our future project includes extending CCEN to real-time
clustering for animal reidentification in videos.
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