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Abstract

In classifying sequential data, a new classifier is needed after a sudden concept change. However, the old classifier may be better
than a new classifier trained on a small window of new data. We derive a general formula for the size of this window, with a
closed-form expression for two equiprobable Gaussian classes. Numerical experiments demonstrate that swapping the classifiers
after the window has been acquired is better than using the new classifier right after the change or not modifying the classifier at all.

Keywords: pattern recognition, on-line algorithms, concept drift, variable window size, linear discriminant classifier

1. Introduction

Streamline pattern recognition and machine learning have
been criticised for not addressing adequately the challenges of
real-life problems [1]. Concept change (also termed concept
drift or population drift) is ubiquitous, multifaceted anddiffi-
cult to handle. Given the complexity of the topic, there is only
a handful of idiosyncratic theoretical studies focused on small
sub-problems, usually bound by constraints and assumptions
[2, 3, 4]. A theoretical break-through is likely to come upon
accumulation of a critical mass of such “building blocks”. Our
study is meant to contribute to this collection.

When a classifier is faced with changes in the underlying
problem (concept drift), it needs a mechanism to adapt to these
changes. The easiest solution is to keep a window over the in-
coming data and re-train the classifier on the data in the most
recent window. The window size is crucial because it deter-
mines the flexibility of the classifier, which needs to match the
style and pace of the changes. If the window is too small, the
classifier will tend to learn all the noise in the data. Conversely,
large windows will make the classifier inert and insensitiveto
changes.

Window size has been discussed at length in relation to
change detection [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], including
frequent itemset mining [26]. The size reduction of the window
after the change detection is typically guided by heuristics. Pre-
defined reduction rate [6] seems to be an obvious starting point.
Upon a change detection, the window shrinks to a fixed mini-
mum. Gama et al [12] go a step further by constructing a win-
dow that starts at the first sign of the change (entering a “warn-
ing zone”) and contains all observations up to the point when
the concept drift is “confirmed”. The observations in this win-
dow are supposed to have come after the onset of the change,
and are thus used as the new training data. Exhaustive backward

search through a host of past of data [7, 10] is the next logical
step. The most recent part of the data, where the error is signif-
icantly higher than the error on the older part, is retained as the
new window. Since exhaustive search may be too demanding
computationally, golden section search through possible cut-off
points of the past data has been considered [11]. Theoretical re-
sults have been derived for splitting a change-detection window
[10], in the form of bounds on the false positive and false nega-
tive detections. On the other hand, theoretical results that relate
thetraining window size with the online classification accuracy
in changing environments are still in demand.

Consider the following real-time classification scenario.A
sequence of i.i.d. data comes from sourceS1. At time t0 a
sudden concept shift occurs, in which sourceS1 is replaced by
sourceS2. Assume thatt0 is known but the probability distri-
butions corresponding to the two sources are unknown. Sup-
pose that we choose a classifier model and train it progressively
on the data fromS1 by expanding the training window with
each new observation (data point). Att0 the trained classifier
becomes obsolete and should be replaced by a new classifier
trained onS2. Let C1 be the classifier trained on the data from
S1, andC2 be the classifier trained on the data fromS2. Since
the data comes in a sequence, it would be in deficit straight
after the change, and the newly trainedC2 will have erratic per-
formance. On the other hand, ifS1 andS2 are similar, the old
classifier may still be more accurate than the new classifier until
a sufficient training window of data coming fromS2 is accumu-
lated.

Here we are interested in finding a relationship between the
error jump and the size of the data window used for training the
classifier after the concept change. In this way we can estimate
the “switch point”, i.e., the time pointt (t > t0) at which we
should stop usingC1 and start usingC2 trained on the pastN∗ =
t − t0 observations. Figure 1 illustrates the problem. It shows
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Figure 1: Error rates ofC1 andC2. The time of the concept shift,t0, is indicated
by a vertical dashed line. The dark-shaded area is the savings in the error if we
switch fromC1 to C2 at the designated switch point.

the error rates ofC1 andC2, as well as the “saving” in the error
if we switch fromC1 to C2 at the designated switch point. The
error reduction depends upon the magnitude of the change, the
way the classifier is affected by the training sample size and the
asymptotic error achievable byC2.

The rest of the paper is organised as follows. Section 2 gives
the theoretical derivation of the optimal window sizeN∗. The
general case is discussed first, followed by a special case oftwo
equiprobable Gaussian classes inℜn with equal covariance ma-
trices. In Section 3 we analyseN∗ with respect to the direction
and magnitude of the concept drift. Numerical experiments are
carried out to evaluate the sensitivity of the window size toinac-
curate underlying assumptions. Practical issues are discussed.
Section 4 concludes the study and outlines some open prob-
lems.

2. Optimal window size after sudden concept drift

2.1. The general case

Let C be the chosen classifier whose parameters are calcu-
lated from a sample of sizeN. Denote byEN(C) the the-
oretical error achievable byC on a training data set of size
N. Let E(C) be the asymptotic error rate ofC obtained as
E(C) = limN→∞ EN(C). Fukunaga and Hayes [16] show that,
for any parametric classifierC, regardless of the types of the
probability density functions (pdfs) and the priors, the classifi-
cation error can be expressed approximately as

EN(C) ≈ E(C) +
1
N

f (C), (1)

where f (C) is a function that depends on the classifier type, the
pdfs, but not onN. Denote byEN

i (C j) the generalisation error
of classifierC trained onN data points from sourceS j with re-
spect to the probability distributions in sourceSi , i, j = 1,2.
Assuming that the training window forS1 is sufficiently large,
C1 is trained to reach its asymptotic errorE1(C1). At the onset

of the change att0, the error of the classifier jumps toE2(C1). It
is expected that the change rendersC1 inadequate for the data
from S2, henceE2(C1) > E1(C1) (Figure 1). If a new clas-
sifier is trained starting with the first observation aftert0, and
the training set is augmented after each observation, the error
of this classifier would beE2(C2) + 1

N f (C2). To find the opti-
mal switch point fromC1 to C2, we solve forN the following
equation

E2(C1) = E2(C2) +
1
N

f (C2). (2)

The switch point is when the size of the training window of data
coming fromS2 reaches

N∗ =
f (C2)

E2(C1) − E2(C2)
. (3)

Variants of f (C) are tabulated for various classifiers and pdfs in
references [16, 17]. The error valuesEi(Ci) can be derived for
specific distributions and classifiers [18].

Note thatN∗ is not merely a window in the standard sense;
we can rather view it as the “switch point” from the old to the
new classifier.

2.2. Linear Discriminant Classifier (LDC) for two Gaussian
classes

Let C be the linear discriminant classifier (LDC) [19] ap-
plied to two equiprobablen-dimensional Gaussian classes with
identical covariance matricesΣ. Let δ( j) be the Mahalanobis
distance between the class means for sourceS j , j = 1,2. The
error of LDC for this case is the Bayes error, and is calculated
as [18]

E2(C2) = Φ

(

−δ
(2)

2

)

, (4)

whereΦ is the cumulative distribution function of the standard
normal distribution. The function relating the sample sizeand
the classification error for LDC is [16]

f (C) =
1

2
√

2πδ

[(

1+
δ2

4

)

n− 1

]

exp

(

−δ
2

8

)

. (5)

For f (C2) we useδ = δ(2). The only unknown term in (3) is
E2(C1) which depends on the type and magnitude of the change.
Assuming that only the class means change while the common
covariance matrix remains the same fromS1 to S2, we derive
in the Appendix the following expression forE2(C1)

E2(C1) =
1
2

{

Φ

(

−wT∆1

δ(1)
− δ

(1)

2

)

+ Φ

(

wT∆2

δ(1)
− δ

(1)

2

)}

, (6)

where∆i is the difference between the means for classωi after
and before the changes. Letµ( j)

i be the mean of classωi in
sourceS j , i, j = 1,2, andΣ be the common covariance matrix
for the classes in both sources. Then∆1 = µ

(2)
1 − µ

(1)
1 and∆2 =

µ
(2)
2 −µ

(1)
2 . The vector with coefficientsw comes fromC1 trained

2



onS1, and is given bywT = (µ(1)
1 − µ

(1)
2 )TΣ−1. With all terms in

place, the optimal switch point for this special case is

N∗ =

1
2
√

2πδ(2)

[(

1+ (δ(2))2

4

)

n− 1
]

exp
(

− (δ(2))2

8

)

1
2

{

Φ
(

−wT∆1

δ(1) − δ
(1)

2

)

+ Φ
(

wT∆2

δ(1) − δ
(1)

2

)}

− Φ
(

− δ(2)

2

) .(7)

Consider as an example two Gaussian classes inℜ5 with
µ

(1)
1 = [0.5,0,0,0,0]T , µ(1)

2 = [−0.5,0,0,0,0]T for sourceS1,
andµ(2)

1 = [1.0,0.3,0,0,0]T , µ(2)
2 = [0.5,0,0,0,0]T for source

S2. In both sources the covariance matrixΣ was obtained from
an identity matrix of size 5 by settingσ1,2 = σ2,1 = 0.3. An
illustration is shown in Figure 2.

Using (7), we get an optimal training window sizeN∗ = 42.
This means that after the substitution ofS1 with S2, the old
classifier is expected to be more accurate than the new classifier
for the first 42 instances fromS2.

2.3. Applicability of the results

Deriving the theoretical switch point does not automatically
offer an algorithm for classification in the presence of concept
drift. The obtained result can be used further for constructing
plug-and-play algorithms. Such an algorithm requires a multi-
tude of choices to be made, e.g., classifier model, change detec-
tion method, pdf approximations, error approximations,f (C)
approximation, etc. Then we are faced with the ‘credit appor-
tionment’ problem; the success or failure of such an algorithm
can be attributed to any of the choices. The collection of choices
might haphazardly smother or highlight the benefit from the op-
timal window size. Our experiments are designed to showcase
the theoretical window size in comparison with other window
sizes. Since we are not proposing an adaptive classifier algo-
rithm we do not run comparisons with other adaptive classifier
models. The experiments in this study are only meant as an
illustration and not proof of concept.

3. Analysis and simulations

3.1. Optimal N∗ in relation to the magnitude and the direction
of the drift

For the 1-dimensional case,x ∈ ℜ, we can investigate the re-
lationship between the direction and the magnitude of the drift
in the class means and the optimal switching pointN∗ (7). With-
out loss of generality, assume thatµ(1)

1 < µ
(1)
2 . Let δ = µ(1)

2 −µ
(1)
1

be the distance between the two means in the distributions of
sourceS1. In the new distributions coming from sourceS2,
µ

(2)
1 = µ

(1)
1 + ∆1 andµ(2)

2 = µ
(1)
2 + ∆2. The common variance in

both cases was 1. The set-up is depicted below

µ
(2)
1 µ

(1)
1 µ

(1)
2 µ

(2)
2

• ◦
∆1

oo_ _ _ _ ◦
δ ∆2

//_______ •

We varied∆1 and∆2 independently in the interval [−δ, δ].
Figure 3 gives a colour plot and a surface plot of log(N∗) as a
function of∆1 and∆2 for δ = 4.

The ridge along the diagonal section from (δ/2,−δ/2) to
(−δ, δ) reflects the case where the two centres migrate symmet-
rically about the midpoint, i.e., when∆1 = −∆2. The denomi-
nator in (7) collapses to 0 because the old classifier is optimal
for the new distributions (E2(C1) = E1(C1)), andN∗ approaches
infinity. For visualisation purposes we cut off the peak by reset-
ting all denominator values smaller than 10−5 to 10−5. This is
the cause of the flat top at the upper left corner (−4,4). The part
of the diagonal starting from (0,0) and ending at (−4,4) corre-
sponds to the case where the centres move apart, while the part
from (0,0) down to (−2,2) corresponds to the two centres mov-
ing symmetrically towards one another. In both cases, the old
classifier is optimal (regardless of the error), andN∗ → ∞. At
(−2,2), the centres fall on top of one another, and no classifier
can be better than random chance. Hence the ridge across from
(−δ,0) to (0, δ). For all pairs (∆1,∆2) on this line,∆2 − ∆1 = δ,
which means thatµ(2)

1 = µ
(2)
2 (the concept change merges the

two classes into one). For this case the old classifier will be
as useless as any classifier,E2(C1) = E1(C1) = 0.5, therefore
N∗ → ∞.

The points (∆1,∆2) on the right diagonal correspond to the
case∆1 = ∆2, i.e. the classes are shifted together to the left or to
the right. The old classifier in this case becomes progressively
more inadequate with the size of the offset.

The darker subregions ofA andB correspond to very small
N∗ (negative log(N∗)) reflecting the case where even a very
coarse and undertrained classifier for sourceS2 is better than
the old classifierC1 trained on sourceS1. Small values ofN∗

are not necessarily related with large error. Consider the pair
(∆1 = −δ,∆2 = 0). Class 1 moves to the left byδ while class 2
stays put. The separability increases substantially, which leads
to a smallerf (C2) term. On the other hand, due to the increased
separabilityE2(C2) may be much smaller thanE2(C1). There-
fore N∗ will be small. This situation is most prominently ex-
pressed in regionC where the two means “swap places” so that,
while µ(1)

1 < µ
(1)
2 , after the concept changeµ(2)

2 < µ
(2)
1 . In this

caseC1 will give the opposite labels inS2 and will be worse
than chance. The old classifier should be immediately replaced
with C2, even thoughC2 might act as the largest probability
classifier before proper training.

3.2. Numerical experiments

In order to examine equation (7) we generated four data sets
commonly used in concept drift research [20, 24]. We also used
two real data sets from the UCI repository [25] adding to them
artificial drift.

Gaussian data.Two hundred observations were generated as
the sequential data, 100 before the concept change, and 100 af-
ter. The number of features was chosen to ben = 4. The means
in sourceS1 wereµ(1)

1 = [−1,0,0,0]T andµ(1)
2 = [1,0,0,0]T .

The concept drift was set at∆1 = [0.5,0.2,0,0,0]T and∆2 =

[0.7,0,0,0,0]T . The prior probabilities in both sources were
0.5/0.5. The common covariance matrix,Σ, was constructed
from an identity matrix of size 4 by settingσ1,2 = σ2,1 = 0.3.

3
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Figure 2: Data from sourcesS1 (a) andS2 (b), plotted in the first two dimensions. The centres of the twoclasses are marked. The optimal discriminant lines for the
two sources are shown in both plots.
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Figure 3: Plots of log(N∗) as a function of the offsets of the means,∆1 and∆2. (a) Colour plot. Dark colour corresponds to smallerN∗; (b) Surface plot (with
restricted height) for log(N∗).

STAGGER data [5].Each data point was described by three
features, each with three possible categories: size∈ {small,
medium, large}, colour∈ {red, green, blue} and shape∈ {square,
circular, triangular}. The numerical representation of a data
point consisted of 9 bits, 3 for each feature. For exam-
ple, a large, red, square object was encoded as the vector
[0,0,1,1,0,0,1,0,0]T and treated as a point inℜ9. Three clas-
sification tasks were to be learned in a course of 120 points.
From point 1 to point 40, the classes to be distinguished were
[size= small AND colour= red] vs all other values; from 41
to 80, [colour= green OR shape= circular] vs all other values;
and from 81 to 120, [size= small OR size= large] vs all other
values.

Moving-hyperplane data [21, 22, 23].The initial data and the
4 subsequent concept changes are shown in Figure4. The sepa-
ration line started at 0◦ and was rotated to 45◦, 90◦, 135◦, 180◦.
To form sequential data, 50 i.i.d points were drawn from each

source before the next rotation.

SEA data [24]. Each data point was described by three fea-
tures,x = [x1, x2, x3]T , wherex were uniformly randomly gen-
erated from [0,10]3. Only the first two features were relevant.
An instance belonged to class 1 ifx1 + x2 ≤ Θ and to class
2 otherwise, whereΘ was a threshold value, different for each
concept. There were four conceptsΘ = 8; 9; 7; 8.5. We gener-
ated 200 instances for each concept. No label noise was added
so the two classes were perfectly separable by a hyperplane in
the feature space [0,10]3, parallel to thex3 axis.

Vote data [25]. This data set represents the 1984 United States
Congressional Voting Records (435 data points of which 267
democrats and 168 republicans with 16 binary features).

Ionosphere data [25].This data set represents a two-class
problem where a radar returns ‘good’ and ‘bad’ signals. The

4
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Figure 4: The five stages of the moving hyperplane data (0◦,45◦,90◦,135◦,180◦)

data consists of 351 instances (136+ 215), each having 34 fea-
tures.

To form different i.i.d data sequences with concept drift, the
real data was first randomly permuted. Then feature pairs were
swapped at every 50th instance (two features for the Vote data
and four features for the Ionosphere data).

We compared the following scenarios

• A. No update.RunningC1 all the way through the sequen-
tial data.

• B. Update without forgetting.Online updating ofC1 with-
out forgetting past data.

• C. Complete forgetting.Switching classifiers att0 by dis-
missingC1 and starting the training ofC2.

• D. Partial forgetting. Switching classifiers atN∗, where
the means in both distributions are estimated from the se-
quential data.

In order to bypass the issue of change detection, we assumed
that the change points are known for scenarios A, C and D.

We did not compare with the plug-and-play algorithms be-
cause this would mix the effect of change detection with the
classifier switch point.

For each data point submitted as a part of the sequence, an
independent testing set of 100 objects was generated and la-
belled according to the current class description. The classifier
was retrained and tested after each observation. The four classi-
fiers were trained and tested on identical data in order to enable
pairwise comparison. The nearest mean classifier (NMC) was
used. The evaluation of (7) required only the class means to be
estimated from the old and the new distributions. We should
mention the following three issues

• Multiple changes.We note that in scenario A, the classifier
was trained on the first bout of sequential data, up to the
first change. The same classifier was applied in any sub-
sequent changes. In the calculation ofN∗, however, we
used a differentC1 after each change. For example, with
the moving hyperplane data, classifierC2 trained after ro-
tation to 45◦ becomes the “old” classifier with respect to
the next rotation to 90◦. Following that, the new classifier
was taken asC1 with respect to the next rotation to 135◦,
and so on.

• Single class.If only points from one of the classes were
available, then NMC would label all the data to that class.
As the points came randomly, the probability of error of
C2 at the first few observations was likely to reach level
(1 − maxi P(ωi)) , i.e., 0.5. In that caseN∗ = ∞, because
there was no difference as to which classifier to use. That
means no switch was recommended. In this caseδ = 0
and due to thatf (C) = ∞, while E2(C2) = E2(C1) = (1−
maxi P(ωi)).

• Premature switch. Suppose that we start counting the
observations fromt0 onwards. At observationti we re-
evaluated the window, denotedN∗i . If i < N∗i , then the old
classifier was still useful, otherwise we switched toC2.
Since we did not switch back and since there was noise
in the estimate ofN∗, it was likely that the switch came
earlier than necessary.

One hundred runs were carried out for the artificial data. Fig-
ure 5 plots the testing error rate for the three data sets. Table 1
shows the overall error and its 95% confidence interval. The
overall error is the testing error averaged across the wholeon-
line run. Since all 4 classifiers were trained and tested on iden-
tical data, pairedt-tests were carried out between scenario D on
the one hand, and A, B, and C, on the other hand. The results
are indicated in the table.1 Symbol ‘◦’ means that the scenario
was found to be significantly worse than D, and ‘•’ means that
the scenario was found to be significantly better than D.

For the real data, three hundred runs were carried out, using
different random permutations of the data. The running classi-
fication error was estimated, i.e., the classifier was trained on
data instances 1,2, . . . , t and tested on instancet + 1. Table 1
shows the overall error and its 95% confidence interval.

The window approach D was significantly better than the
other three approaches except for the STAGGER data where
immediate switching toC2 was significantly better than the
window approach. The reasons for this exception are several:
(1) there was no peak of the errorEN

2 (C2) aboveE1(C2) for
smallN; (2) the concepts were very different and also had dif-
ferent priors; (3) there was no noise in the data. Therefore the
new classifier was more useful right away. The statistical dif-
ferences were estimated only as an illustration. They depend on
the chosen time length of the sequential data. Our approach is

1Note that thet-test results cannot be recovered from the individual confi-
dence intervals.

5



0 50 100 150 200
0.1

0.2

0.3

0.4

0.5

0.6

 

 

A
B
C
D

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

 

 

(a) (b)

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

 

 

0 200 400 600 800
0

0.1

0.2

0.3

0.4

0.5

(c) (d)

Figure 5: The 4 scenarios with the Gaussian data (a); STAGGERdata (b); the moving hyperplane data (c) and SEA data (d) whereA = No update; B= Update
without forgetting; C= Complete forgetting; D= Partial forgetting with optimal window size.

Table 1: Total error for the 4 scenarios (in %) with 95% confidence intervals

Data A = No update B= No forgetting C= Complete forgetting D= Partial forgetting
Gaussian 20.53 (±0.17)◦ 19.52 (±0.14) 19.74 (±0.15)◦ 19.47 (±0.15)
Stagger 48.92 (±0.49)◦ 31.00 (±0.76)◦ 9.99 (±0.41)• 12.57 (±0.54)

Moving hyperplane 51.36 (±0.54)◦ 31.78 (±0.48)◦ 9.78 (±0.28)◦ 9.62 (±0.28)
SEA 11.12 (±0.26)◦ 9.85 (±0.14)◦ 9.14 (±0.19)◦ 8.90 (±0.19)
Votes 15.01 (±0.13)◦ 12.19 (±0.07)◦ 12.73 (±0.08)◦ 11.19 (±0.08)

Ionosphere 28.60 (±0.52)◦ 26.89 (±0.24)◦ 27.92 (±0.21)◦ 26.54 (±0.22)

Note: Symbol ‘◦’ means that the scenario was found to be significantly worse than D,

and ‘•’ means that the scenario was found to be significantly better than D

meant to act as an ‘oracle’ identifying the most accurate of the
two original classifiers at each time and switch as soon asN∗ is
reached. Thus there were intervals where the running error of
D coincides with that for eitherC1 or C2. In the part before the
change, the NMC classifiers for the 4 scenarios used identical
training and testing data and had the same running error. The
magnitude of the difference depends on the number of drifts
w.r.t. the length of the series observed. If the sequential data
was let to run long enough, the significance of the error peak
being shaved off would be smoothed over, and scenarios C and
D would have been indistinguishable.

Note that only the Gaussian data satisfied the assumptions of
the model; the other five cases illustrated that the theory might
have been useful even when the assumptions did not hold.

Assuming that sufficient data is available from the old dis-
tribution, the estimates ofµ(1)

1 andµ(1)
2 would be stable. The

inaccuracy of estimatingµ(2)
1 andµ(2)

2 from a small sample of se-
quential data coming after the change will induce instability of
the estimate ofN∗ causing premature switch. With the Gaussian

data, where the distributions are guessed correctly, this will lead
to curve D (partial forgetting) being closer to curve C (complete
forgetting) rather than following curve A (no update), or even
better curve B (update but no forgetting). Bias inN∗ comes
from wrongly guessed distributions as for the STAGGER data
and moving hyperplane data.

3.3. Practical issues

To calculate the optimal switch pointN∗ from data, we need
to know the time of the change,t0, the errorsE2(C1) andE2(C2),
and the termf (C2) that accounts for the error component com-
ing from inaccurate estimates of the parameters of the classifier.

Change detection methods can be employed to determinet0.
If the change timet0 is detected at a later timetd < t0 + N∗,
nothing is lost because the optimal classifier has been running
all the way to the detection. Large changes can be detected
quicker than small changes. For small changes, however,N∗ is
larger, thus allowing for a larger detection time.
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Application of the switch point calculation is not straightfor-
ward if we drop the assumption of Gaussian densities. In that
case the estimation of the three terms in (3) requires suitable
data sets to train and test the chosen classifier. With estima-
tion techniques in place, an algorithm for resizing of a moving
training window can be developed.

4. Conclusion

Here we derive an optimal window size for online classifi-
cation of sequential data after a sudden concept change. The
window sizeN∗ can be computed from the classification er-
rors after the change, and a term that gauges the contribution
of the inaccuracy of parameter estimates to the classification
error. A special case of equiprobable Gaussian classes is de-
tailed for the linear discriminant classifier (LDC). The general
formula for calculatingN∗ is expanded so that the window size
can be calculated using only the estimates of the means inS1

andS2, and the common covariance matrix. The common co-
variance matrix is the same before and after the change, so it
can be estimated fromS1, where we assume practically unlim-
ited data. The analysis reveals thatN∗ depends strongly on the
change, and for large changes the old classifier should be dis-
missed quite early on (the valleys in Figure 3 (b)). On the other
hand, having a window whereC1 is better thanC2 gives a lee
way for the change detection. If the change is detected within
N∗ observations aftert0, the two classifiers can be swapped at
the optimal moment. The numerical simulations demonstrated
that the window approach does cut the error peak when it exists.

There could be various extensions of this work. Derivation
of an optimal window size for other classifier models can be
approached in a similar way as we showed for LDC. Differ-
ent types of concept drift can be explored within the proposed
framework with a view to derive theoretically an optimal vari-
able window size. The practical impact of such theories de-
pends upon how robust the proposed methods are with respect
to violation of the underlying assumptions, hence empirical ver-
ification will be needed.

Appendix A. Theoretical generalisation error of LDC after
the concept change

Following Raudys’ derivation of the classification error [18],
here we derive the expression for the error of the linear dis-
criminant classifierC trained on sourceS1 and applied to the
probability distributions in sourceS2 (notation E2(C1)). In
sourceS1, the two classes are distributed asx ∼ N(µ(1)

i ,Σ),
x ∈ ℜn, i = 1,2. Superscript in parentheses will be used to
indicate the source. We assume that the prior probabilitiesare
P(ω1) = P(ω2) = 1/2. The discriminant function of LDC is

g(x) = wTx + w0 (A.1)

=
(

µ
(1)
1 − µ

(1)
2

)T
Σ−1x (A.2)

+
1
2

[

(

µ
(1)
2

)T
Σ−1µ

(1)
2 −

(

µ
(1)
1

)T
Σ−1µ

(1)
1

]

. (A.3)

If g(x) ≥ 0 thenx is assigned to classω1, otherwise, to class
ω2. The probability thatC will make an error is

E(C) =
1
2

(

Pr(g(x) < 0|ω1) + Pr(g(x) ≥ 0|ω2)
)

. (A.4)

Conditioned by eitherω1 or ω2, the discriminant functiong(x)
becomes a linear combination of normally distributed variables,
and is normally distributed itself. The error can be calculated
using the cumulative distribution functionΦ of the standard
normal distribution. For this, we need the expectation and the
standard deviation ofg(x), conditioned by the respective class
label. For sourceS2, classω1 has meanµ(2)

1 = µ
(1)
1 +∆1. There-

fore the expectation ofg(x) for the “new”ω1 is

E(2)
1 [g(x)] = wTE(2)

1 [x] + w0 = wT(µ(1)
1 + ∆1) + w0. (A.5)

Expandingw andw0 leads to

E(2)
1 [g(x)] =

1
2

(

δ(1)
)2
+ wT∆1, (A.6)

whereδ(1) =
(

µ
(1)
1 − µ

(1)
2

)T
Σ−1

(

µ
(1)
1 − µ

(1)
2

)

is the Mahalanobis
distance between the class means in sourceS1. In the same
way we arrive at the expectation ofg(x) conditioned by the new
classω2

E(2)
2 [g(x)] = −1

2

(

δ(1)
)2
+ wT∆2. (A.7)

The variance ofg(x) is the same for both classes, and is given
by

V[g(x)] = V[wTx + w0] = wTΣw (A.8)

=
(

µ
(1)
1 − µ

(1)
2

)T
Σ−1 Σ Σ−1

(

µ
(1)
1 − µ

(1)
2

)

(A.9)

=
(

δ(1)
)2
. (A.10)

Then

Pr(g(x) < 0|ω1) = Φ

(

−wT∆1

δ(1)
− δ

(1)

2

)

(A.11)

and

Pr(g(x) ≥ 0|ω2) = 1− Φ
(

−wT∆2

δ(1)
+
δ(1)

2

)

(A.12)

= Φ

(

wT∆2

δ(1)
− δ

(1)

2

)

(A.13)

By substituting the conditional probabilities (A.11) and (A.13)
back in (A.4), we arrive at the error onS2 of LDC trained on
S1

E2(C1)

= 1
2

{

Φ
(

−wT∆1

δ(1) − δ
(1)

2

)

+ Φ
(

wT∆2

δ(1) − δ
(1)

2

)}

. (A.14)
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