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Abstract

In classifying sequential data, a new classifier is needid afsudden concept change. However, the old classifier magtber
than a new classifier trained on a small window of new data. @e/el a general formula for the size of this window, with a
closed-form expression for two equiprobable GaussiarselasNumerical experiments demonstrate that swappinddbsifters
after the window has been acquired is better than using thelassifier right after the change or not modifying the dfsessat all.
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1. Introduction search through a host of past of data [7, 10] is the next lbgica
step. The most recent part of the data, where the error if-sign

Streamline pattern recognition and machine learning havéantly higher than the error on the older part, is retainetha
been criticised for not addressing adequately the chadleng new window. Since exhaustive search may be too demanding
real-life problems [1]. Concept change (also termed concepcOmputationally, golden section search through possiltie(®
drift or population drift) is ubiquitous, multifaceted awmiifii-  Points of the past data has been considered [11]. Thedretica
cult to handle. Given the complexity of the topic, there ifyon Sults have been derived for splitting a change-detectionlaw
a handful of idiosyncratic theoretical studies focused mals ~ [10], in the form of bounds on the false positive and falseareg
sub-problems, usually bound by constraints and assumptioﬁiVe detections. On the other hand, theoretical resultsétate
[2, 3, 4]. A theoretical break-through is likely to come upon thetraining window size with the online classification accuracy
accumulation of a critical mass of such “building blocks'urO  in changing environments are still in demand.
study is meant to contribute to this collection. Consider the following real-time classification scenarf®.

When a classifier is faced with changes in the underlyingsequence of i.i.d. data comes from souBse At time to a
problem (concept drift), it needs a mechanism to adapt teethe sudden concept shift occurs, in which souggeis replaced by
changes. The easiest solution is to keep a window over the irsourceS,. Assume thaty is known but the probability distri-
coming data and re-train the classifier on the data in the modautions corresponding to the two sources are unknown. Sup-
recent window. The window size is crucial because it deterpose that we choose a classifier model and train it progeggsiv
mines the flexibility of the classifier, which needs to mateh t on the data fron5; by expanding the training window with
style and pace of the changes. If the window is too small, th@ach new observation (data point). #tthe trained classifier
classifier will tend to learn all the noise in the data. Cosety, becomes obsolete and should be replaced by a new classifier
large windows will make the classifier inert and insensitive trained onS,. LetC; be the classifier trained on the data from
changes. S;, andC,; be the classifier trained on the data fr@n Since

Window size has been discussed at length in relation téhe data comes in a sequence, it would be in deficit straight
change detection [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], inolyd after the change, and the newly trair@gwill have erratic per-
frequent itemset mining [26]. The size reduction of the vawd  formance. On the other hand,S§ andS; are similar, the old
after the change detection is typically guided by heussstitre- ~ classifier may still be more accurate than the new classifigir u
defined reduction rate [6] seems to be an obvious startimg.poi @ suficient training window of data coming frof, is accumu-
Upon a change detection, the window shrinks to a fixed minilated.
mum. Gama et al [12] go a step further by constructing a win- Here we are interested in finding a relationship between the
dow that starts at the first sign of the change (entering arfwar error jump and the size of the data window used for trainirg th
ing zone”) and contains all observations up to the point whertlassifier after the concept change. In this way we can estima
the concept drift is “confirmed”. The observations in thisiwi the “switch point”, i.e., the time point (t > to) at which we
dow are supposed to have come after the onset of the changdhould stop usin@; and start usin@, trained on the past* =
and are thus used as the new training data. Exhaustive bettkwa — ty observations. Figure 1 illustrates the problem. It shows



of the change &, the error of the classifier jumps E»(C,). It

1r is expected that the change rend€gsinadequate for the data
from Sy, henceEy(C;1) > E;(C;) (Figure 1). If a new clas-
08 . sifier is trained starting with the first observation aftgrand
E,(C) Switch Point the training set is augmented after each observation, tiog er
of this classifier would b&,(Cy) + ﬁf(cz). To find the opti-
% 0.6 mal switch point fromC; to C,, we solve forN the following
5 equation
i 0.4 E,C) 1
El(Cl) Ez(C]_) = E2(C2) + N f(C2) (2)
02 The switch point is when the size of the training window ofedat
| coming fromS, reaches
0 ‘

Time
% NP () -
E2(C1) - E2(Co)

Figure 1: Error rates €1 andCs. The time of the concept shit, is indicated . ) n )
by a vertical dashed line. The dark-shaded area is the smirirtge errorifwe ~ Variants off (C) are tabulated for various classifiers and pdfs in
switch fromCy to C at the designated switch point. references [16, 17]. The error valuegC;) can be derived for
specific distributions and classifiers [18].

Note thatN* is not merely a window in the standard sense;
we can rather view it as the “switch point” from the old to the

ew classifier.

the error rates of; andC,, as well as the “saving” in the error
if we switch fromC; to C, at the designated switch point. The
error reduction depends upon the magnitude of the change, '
way the classifier isféected by the training sample size and the
asymptotic error achievable I65. 2.2. Linear Discriminant Classifier (LDC) for two Gaussian
The rest of the paper is organised as follows. Section 2 gives ~ classes

the theoretical derivation of the optimal window silké. The
general case is discussed first, followed by a special caseof
equiprobable Gaussian classe&ihiwith equal covariance ma-
trices. In Section 3 we analy$¢ with respect to the direction
and magnitude of the concept drift. Numerical experimergs a
carried out to evaluate the sensitivity of the window sizi -

Let C be the linear discriminant classifier (LDC) [19] ap-
plied to two equiprobabla-dimensional Gaussian classes with
identical covariance matricés Let 60) be the Mahalanobis
distance between the class means for soficg = 1,2. The
error of LDC for this case is the Bayes error, and is calcdlate

curate underlying assumptions. Practical issues are shiscu as [18]
Section 4 concludes the study and outlines some open prob- 5@
lems. E2(Cp) = Q(_T)’ 4)

where® is the cumulative distribution function of the standard

2. Optimal window size after sudden concept drift normal distribution. The function relating the sample sanel

2.1. The general case

the classification error for LDC is [16]

Let C be the chosen classifier whose parameters are calcu- 52 52
lated from a sample of sizdl. Denote byEN(C) the the- f(C) = PN (1+ Z)”_ 1] exp(—g). (%)
oretical error achievable b on a training data set of size
N. Let E(C) be the asymptotic error rate & obtained as For f(C,) we uses = 6@. The only unknown term in (3) is
E(C) = limno« EN(C). Fukunaga and Hayes [16] show that, E,(C,) which depends on the type and magnitude of the change.
for any parametric classifie€, regardless of the types of the Assuming that only the class means change while the common
probability density functions (pdfs) and the priors, thassiifi-  covariance matrix remains the same fr@nto S,, we derive

cation error can be expressed approximately as in the Appendix the following expression f&»(C1)
1 T (1) T (1)
ENC) ~ E©C) + < f(C), (1) (WAL 57 W_Az_5
N EZ(Cl) - 2 5@ 2 5@ (6)

wheref(C) is a function that depends on the classifier type, the
pdfs, but not orN. Denote byEN(C;) the generalisation error whereA, is the diference between the means for clagsifter

of classifierC trained onN data points from sourc8; with re- ~ and before the changes. Le{’ be the mean of class; in
spect to the probability distributions in sourSg i,j = 1,2.  SourceS;, i, j = 1,2, andX be the common covariance matrix

Assuming that the training window f@; is suficiently large, ~ for the classes in both sources. Then= {2 - (" andA, =
C, is trained to reach its asymptotic erer(C,). At the onset #(22)_#(21)_ The vector with cofficientsw comes fronC, trained
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on Sy, and is given byv™ = (i — k{1, With all terms in
place, the optimal switch point for this special case is

e [(1+ G- 1] e 52)
Z)-o(-%)

1 WTA; 5@ wTl A,
io(- 7)+ @ (5

)

Consider as an example two Gaussian classeR Srwith
1 = 105,0,0,0,0]", 4P = [-0.5,0,0,0,0] for sourceS;,
andu®?® = [1.0,0.3,0,0,0]", 1P = [0.5,0,0,0,0]" for source
S,. In both sources the covariance maftixvas obtained from
an identity matrix of size 5 by setting;2 = 021 = 0.3. An
illustration is shown in Figure 2.

Using (7), we get an optimal training window sikE = 42.
This means that after the substitution ®f with S,, the old
classifier is expected to be more accurate than the newfodassi
for the first 42 instances froi8,.

N* =

0

2.3. Applicability of the results

Deriving the theoretical switch point does not automalycal

offer an algorithm for classification in the presence of concep&

drift. The obtained result can be used further for consimgct
plug-and-play algorithms. Such an algorithm requires atimul

tude of choices to be made, e.g., classifier model, change-det

tion method, pdf approximations, error approximatioh&Z)

approximation, etc. Then we are faced with the ‘credit appor

tionment’ problem; the success or failure of such an alborit
can be attributed to any of the choices. The collection ofcgd®
might haphazardly smother or highlight the benefit from the o

timal window size. Our experiments are designed to showca
the theoretical window size in comparison with other window
sizes. Since we are not proposing an adaptive classifier alg
rithm we do not run comparisons with other adaptive clagsifie
models. The experiments in this study are only meant as an

illustration and not proof of concept.

3. Analysisand simulations

3.1. Optimal N in relation to the magnitude and the direction
of the drift

For the 1-dimensional caseg ‘R, we can investigate the re-
lationship between the direction and the magnitude of tife dr
in the class means and the optimal switching pbi’n(??. With-
out loss of generality, assume tlpé]t) <u®. Lets = pP -

g Y, My Lelo = uy " — 1y

0]

The ridge along the diagonal section frodyZ, —6/2) to
(-0, 6) reflects the case where the two centres migrate symmet-
rically about the midpoint, i.e., whefy; = —A,. The denomi-
nator in (7) collapses to 0 because the old classifier is @btim
for the new distributionsK,(C,) = E;1(C;)), andN* approaches
infinity. For visualisation purposes we cuf the peak by reset-
ting all denominator values smaller than"¥@ 107°. This is
the cause of the flat top at the upper left cornet,@). The part
of the diagonal starting from (0) and ending at<4, 4) corre-
sponds to the case where the centres move apart, while the par
from (0, 0) down to (2, 2) corresponds to the two centres mov-
ing symmetrically towards one another. In both cases, ttle ol
classifier is optimal (regardless of the error), éfid— co. At
(-2, 2), the centres fall on top of one another, and no classifier
can be better than random chance. Hence the ridge across from
(-6,0) to (Q 6). For all pairs A1, Ay) on this line,A; — Ay = 6,
which means that® = u{ (the concept change merges the
two classes into one). For this case the old classifier will be
as useless as any classifieg(C;) = E1(C1) = 0.5, therefore
N* — oo.

The points A1, Ay) on the right diagonal correspond to the
aseA; = Ay, i.e. the classes are shifted together to the left or to
the right. The old classifier in this case becomes progrelysiv
more inadequate with the size of thiset.

The darker subregions & and B correspond to very small
N* (negative logl™*)) reflecting the case where even a very
coarse and undertrained classifier for soudgds better than
the old classifieC; trained on sourc&;. Small values ofN*
are not necessarily related with large error. Consider #ie p

S%Al = —6,A, = 0). Class 1 moves to the left ywhile class 2

stays put. The separability increases substantially, igiads

to a smallerf (C,) term. On the other hand, due to the increased
SeparabilityE,(C,) may be much smaller thai,(C,). There-
fore N* will be small. This situation is most prominently ex-
pressed in regio@ where the two means “swap places” so that,
while #(11) < #(21), after the concept changéz) < ,u(lz). In this
caseC; will give the opposite labels 1%, and will be worse
than chance. The old classifier should be immediately replac
with C,, even thoughC, might act as the largest probability
classifier before proper training.

3.2. Numerical experiments

In order to examine equation (7) we generated four data sets
commonly used in concept drift research [20, 24]. We alsd use

be the distance between the two means in the distributions dyvo real data sets from the UCI repository [25] adding to them

sourceS;. In the new distributions coming from sour&,
12 = 19 + A andu®? = 1) + A, The common variance in
both cases was 1. The set-up is depicted below

2 1 1
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We variedA; and A, independently in the interval-p, 6].
Figure 3 gives a colour plot and a surface plot of Mg(as a
function of A, andA, for 6 = 4.

artificial drift.

Gaussian data.Two hundred observations were generated as
the sequential data, 100 before the concept change, and-100 a
ter. The number of features was chosen tmbe4. The means

in sourceS; wereu!” = [-1,0,0,0]™ andul” = [1,0,0,0]".

The concept drift was set & = [0.5,0.2,0,0,0]" andA;
[0.7,0,0,0,0]". The prior probabilities in both sources were
0.50.5. The common covariance matri, was constructed
from an identity matrix of size 4 by settingy , = 021 = 0.3.



Figure 2: Data from source&3; (a) andS; (b), plotted in the first two dimensions. The centres of the ¢tlasses are marked. The optimal discriminant lines for the

two sources are shown in both plots.
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Figure 3: Plots of log{*) as a function of the fisets of the meangy; andA,. (a) Colour plot. Dark colour corresponds to smalet, (b) Surface plot (with

restricted height) for log{*).

STAGGER data [5].Each data point was described by threesource before the next rotation.

features, each with three possible categories: sizemall,
medium, largg coloure {red, green, blueand shape {square,

SEA data [24]. Each data point was described by three fea-

circular, triangulay. The numerical representation of a datatyresx = [xq, x», X3]T, wherex were uniformly randomly gen-

point consisted of 9 bits, 3 for each feature.

For exam-erated from [010]. Only the first two features were relevant.

ple, a large, red, square object was encoded as the vectph instance belonged to class 1%f + x, < © and to class

[0,0,1,1,0,0,1,0,0]" and treated as a point R°. Three clas-

2 otherwise, wher® was a threshold value, fiiérent for each

sification tasks were to be learned in a course of 120 pointgoncept. There were four concefs= 8;9; 7; 85. We gener-
From point 1 to point 40, the classes to be distinguished wergted 200 instances for each concept. No label noise was added
[size = small AND colour= red] vs all other values; from 41 so the two classes were perfectly separable by a hyperptane i

to 80, [colour= green OR shape circular] vs all other values;
and from 81 to 120, [size small OR size= large] vs all other
values.

Moving-hyperplane data [21, 22, 23]The initial data and the

the feature space [Q0J, parallel to thex; axis.

Vote data [25]. This data set represents the 1984 United States
Congressional Voting Records (435 data points of which 267
democrats and 168 republicans with 16 binary features).

4 subsequent concept changes are shown in Figure4. The sepa-

ration line started at®0and was rotated to 4590°, 135, 18C°.

lonosphere data [25].This data set represents a two-class

To form sequential data, 50 i.i.d points were drawn from eaclproblem where a radar returns ‘good’ and ‘bad’ signals. The

4



Figure 4: The five stages of the moving hyperplane d&tz8,90°,135,18C)

data consists of 351 instances (13815), each having 34 fea-
tures.

To form different i.i.d data sequences with concept drift, the
real data was first randomly permuted. Then feature paire wer
swapped at every 50th instance (two features for the Vot dat
and four features for the lonosphere data).

e Single class.If only points from one of the classes were
available, then NMC would label all the data to that class.
As the points came randomly, the probability of error of
C, at the first few observations was likely to reach level
(2 - max P(w)) , i.e., 0.5. In that casB* = oo, because
there was no diierence as to which classifier to use. That
means no switch was recommended. In this ¢ase 0

We compared the following scenarios
and due to thaf (C) = oo, while E;(C,) = E»(Cy) = (1 -
e A. No updateRunningC; all the way through the sequen- max P(wi)).

tial data. e Premature switch. Suppose that we start counting the

observations frontg onwards. At observatioh we re-
evaluated the window, denotéd. If i < N/, then the old
classifier was still useful, otherwise we switchedGg.
Since we did not switch back and since there was noise
in the estimate oN*, it was likely that the switch came
earlier than necessary.

e B. Update without forgettingOnline updating oC; with-
out forgetting past data.

e C. Complete forgettingSwitching classifiers at by dis-
missingC; and starting the training @,.

* D. Partial f(_)rgettlng._ Sv_wtchmg classm_ers an’, where One hundred runs were carried out for the artificial data= Fig
the means in both distributions are estimated from the se-

quential data ure 5 plots the testing error r{;lte for the thr_ee datg setdeTab
' shows the overall error and its 95% confidence interval. The

. . overall error is the testing error averaged across the whole

In order to bypass the issue of change detection, we assumgfle \,, since all 4 classifiers were trained and tested en-id
that the.change points arg known for scenarios A, C gnd D. tical data, paired-tests were carried out between scenario D on

We did not compare with the plug-and-play algorithms be-the gne hand, and A, B, and C, on the other hand. The results
cause this would mix thefkect of change detection with the ¢ ingicated in the tabfe Symbol %' means that the scenario
classifier switch point. was found to be significantly worse than D, amdrheans that

For each data point submitted as a part of the sequence, e scenario was found to be significantly better than D.
independent testing set of 100 objects was generated and la-For the real data, three hundred runs were carried out, using

belled according to the current class description. Thestflas gifrerent random permutations of the data. The running classi-
was retrained and tested after each observation. The fassiel fication error was estimated. i.e.. the classifier was tchioe

fiers were trained and tested on identical data in order tblena at5 instances, 2. .. ..t and tested on instander 1. Table 1
pairwise comparison. The nearest mean classifier (NMC) wagnhows the overall error and its 95% confidence interval.

used. The evaluation of (7) required only the class meansto b The window approach D was significantly better than the
estimated from thg old and. the new distributions. We shoulg,iher three approaches except for the STAGGER data where
mention the following three issues immediate switching taC, was significantly better than the
window approach. The reasons for this exception are several

was rained on th frst boutof sequential date, up o thg) IS 28 10 BE2E 1 08 T MO L
first change. The same classifier was applied in any Subf’erent priors; (3) there was no noise in the data. Therefwze t
sequent changes. In the calculationfof, however, We€ nhew classifier was more useful right away. The statistical di
used a QTerentcl aiter each change. For. example, with ferences were estimated only as an illustration. They dipan
thg moving hyperplane daEa, c"IaSS|@2r.tra|n_ed after ro- the chosen time length of the sequential data. Our appr@ach i
tation to 45 becomes the “old” classifier with respect to

the next rotation to 90 Following that, the new classifier
was taken a€; with respect to the next rotation to 135
and so on.

¢ Multiple changesWe note that in scenario A, the classifier

INote that thet-test results cannot be recovered from the individual confi-
dence intervals.
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Figure 5: The 4 scenarios with the Gaussian data (a); STAGGER (b); the moving hyperplane data (c) and SEA data (d) whetreNo update; B= Update
without forgetting; C= Complete forgetting; B= Partial forgetting with optimal window size.

Table 1: Total error for the 4 scenarios (in %) with 95% coniiceintervals

Data A =Noupdate B=No forgetting C= Complete forgetting D= Partial forgetting
Gaussian 20.53 ¢£0.17) 0 19.52 ¢0.14) 19.74 £0.15) 0 19.47 ¢0.15)
Stagger 48.92 ¢£0.49)0  31.00 ¢0.76) o 9.99 (£0.41) e 12.57 ¢0.54)
Moving hyperplane| 51.36 £0.54)0  31.78 {&£0.48) o 9.78 0.28) o 9.62 0.28)
SEA 11.12 ¢£0.26) 0 9.85 *0.14) o 9.14 ¢0.19) 0 8.90 +0.19)
\otes 15.01 ¢0.13)o  12.19 £0.07)0 12.73 £0.08) o 11.19 ¢0.08)
lonosphere 28.60 (:0.52)0  26.89 (:0.24) o 27.92 £0.21) 0 26.54 (0.22)

Note: Symbol 6" means that the scenario was found to be significantly worse Eh
and ‘e’ means that the scenario was found to be significantly bettar D

meant to act as an ‘oracle’ identifying the most accuratdef t data, where the distributions are guessed correctly, tilikead

two original classifiers at each time and switch as sodd*as  to curve D (partial forgetting) being closer to curve C (coete
reached. Thus there were intervals where the running efror dorgetting) rather than following curve A (no update), oeav

D coincides with that for eithe€; or C,. In the part before the better curve B (update but no forgetting). BiasNr comes
change, the NMC classifiers for the 4 scenarios used idénticdrom wrongly guessed distributions as for the STAGGER data
training and testing data and had the same running error. Thend moving hyperplane data.

magnitude of the dierence depends on the number of drifts

w.r.t. the length of the series observed. If the sequentitd d L

was let to run long enough, the significance of the error peak-3- Practical issues

being shaved 6 would be smoothed over, and scenarios C and To calculate the optimal switch poitt from data, we need

D would have been indistinguishable. to know the time of the changg, the error€,(C;) andE,(Cy),

Note that only the Gaussian data satisfied the assumptions ghq the term (C,) that accounts for the error component com-
the model; the other five cases illustrated that the theoghtmi i from inaccurate estimates of the parameters of theifitass
have been useful even when the assumptions did not hold. Change detection methods can be employed to deterigine

Assuming that sflicient data is available from the old dis- |f the change time, is detected at a later timg < to + N*,
tribution, the estimates gi{” and{" would be stable. The nothing is lost because the optimal classifier has beenmgnni
inaccuracy of estimating(f) andp(zz) from a small sample of se- all the way to the detection. Large changes can be detected
guential data coming after the change will induce instgbdf ~ quicker than small changes. For small changes, howbVeds
the estimate o* causing premature switch. With the Gaussianlarger, thus allowing for a larger detection time.
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Application of the switch point calculation is not straifgrt If g(x) > O thenx is assigned to class;, otherwise, to class

ward if we drop the assumption of Gaussian densities. In thab,. The probability thaC will make an error is

case the estimation of the three terms in (3) requires daitab 1

data sets to train and test the chosen classifier. With estima E(C) = E(Pr(g(x) < Olwq) + Pr(g(x) > O|w2)). (A.4)

tion techniques in place, an algorithm for resizing of a mgvi

training window can be developed. Conditioned by eithet; or w,, the discriminant functiomg(x)
becomes a linear combination of normally distributed \z&s,
and is normally distributed itself. The error can be calteda

4. Conclusion using the cumulative distribution functiob of the standard
normal distribution. For this, we need the expectation dued t

Here we derive an optimal window size for online classifi- standard deviation af(x), conditioned b;/ the respective class

cation of sequential data after a sudden concept change. Thebel. For sourc&,, classw; has mear,zu(l2 = p(ll) +A;. There-

window sizeN* can be computed from the classification er-fore the expectation aj(x) for the “new” w; is

rors after the change, and a term that gauges the contnibutio

of the inaccuracy of parameter estimates to the classiitati &[0 = W' EP[X] +wo = W (i” + Ar) + wo.  (A5)

error. A spec?al case of_ equiprobable_z_Gaussian classes is dexpandingw andw, leads to

tailed for the linear discriminant classifier (LDC). The geal

formula for calculatingN* is expanded so that the window size 8(12)[g(x)] - 1 (5(1))2 + WAL (A.6)

can be calculated using only the estimates of the meaBs in 2

andS,, and the common covariance matrix. The common COheres® = (”(11) _”(21)>T 51 (’u(ll) _#(21)) is the Mahalanobis

variance matrix is the same before and after the change, SO tetance between the ‘class means in sod@ce In the same

can be estimated froi8;, where we assume practically unlim- way we arrive at the expectation gf) conditioned by the new
ited data. The analysis reveals tiNt depends strongly on the cla)s/&u P y
2

change, and for large changes the old classifier should be dis

missed quite early on (the valleys in Figure 3 (b)). On thepth

hand, having a window whef@; is better tharC, gives a lee

way for the change detection. If the change is detected withi The variance ofy(x) is the same for both classes, and is given

N* observations aftety, the two classifiers can be swapped atpy

the optimal moment. The numerical simulations demonstrate

that the window approach does cut the error peak when iteexist ~ V[9(X)] VIW X +Wp] = w'Zw (A.8)
There gould b_e variogs extensions of th'i§ work. Derivation (ﬂ(ll) _ 'u(zl))T ylyy-1 (Iu(ll) _ ’u(zl)) (A.9)

of an optimal window size for other classifier models can be )

approached in a similar way as we showed for LDCtfé&# = (6(1)) . (A.10)

ent types of concept drift can be explored within the progose

framework with a view to derive theoretically an optimal ivar

810001 = =5 (4°) + W'z (A7)

able window size. The practical impact of such theories de- T @
pends upon how robust tFi)1e proposeg methods are with respect Pr(g(x) < Olwy) = (D(_ Wg(lA)1 B 67) (A.11)
to violation of the underlying assumptions, hence empliviea:
ification will be needed. and
Pr(gx) 2 Olwz) = 1- (D(—V% + ?) (A.12)
Appendix A. Theoretical generalisation error of LDC after WA, SO
the concept change - (6T)2 _ 7) (A.13)

Following Raudys’ derivation of the classification erro8[1 By substituting the conditional probabilities (A.11) anki13)

here we derive the expression for the error of the linear dispack in (A.4), we arrive at the error @, of LDC trained on
criminant classifieC trained on sourc&; and applied to the g,

probability distributions in sourc&, (notation E2(Cl)2. In

sourceS;, the two classes are distributed xas~ N(uil),Z), E2(C1)
x € R", i = 1,2. Superscript in parentheses will be used to = %{@(_% - %)Jﬂp(% - iz“)} (A.14)

indicate the source. We assume that the prior probabikities
P(w1) = P(wz) = 1/2. The discriminant function of LDC is
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