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a b s t r a c t

Many real-life problems can be described as unbalanced, where the number of instances be-

longing to one of the classes is much larger than the numbers in other classes. Examples are

spam detection, credit card fraud detection or medical diagnosis. Ensembles of classifiers have

acquired popularity in this kind of problems for their ability to obtain better results than in-

dividual classifiers. The most commonly used techniques by those ensembles especially de-

signed to deal with imbalanced problems are for example Re-weighting, Oversampling and

Undersampling. Other techniques, originally intended to increase the ensemble diversity, have

not been systematically studied for their effect on imbalanced problems. Among these are

Random Oracles, Disturbing Neighbors, Random Feature Weights or Rotation Forest. This pa-

per presents an overview and an experimental study of various ensemble-based methods for

imbalanced problems, the methods have been tested in its original form and in conjunction

with several diversity-increasing techniques, using 84 imbalanced data sets from two well

known repositories. This paper shows that these diversity-increasing techniques significantly

improve the performance of ensemble methods for imbalanced problems and provides some

ideas about when it is more convenient to use these diversifying techniques.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

The class imbalance problem1 arises when one class has much more examples than the others [11].

Imbalance learning has attracted much attention because imbalanced data sets are common in real world problems like

those related to security: spam detection [29], fraud detection [17], software defect detection [65]; biomedical data: finding the

transition between coding and non-coding DNA in genes [28], mining cancer gene expression [70]; or financial data, for example,

risk predictions in credit data [25].

Classification of imbalanced data is difficult because standard classifiers are driven by accuracy, hence the minority class may

simply be ignored [58], besides generally all classifiers present some performance loss when the data is unbalanced [50]. In ad-

dition, many imbalanced datasets suffer problems related to its intrinsic characteristic. According to [44] there are at least six
∗ Corresponding author. Tel.: +34653030301.

E-mail address: jfdpastor@ubu.es (J.F. Díez-Pastor).
1 Being aware of the terminological debate about “unbalanced” vs “imbalanced”, we will use both words interchangeably. Our reason is that a keyword look-up

should be able to retrieve this study, whichever word has been picked.
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of these problems: overlapping [59], lack of density and information [66], noisy examples [8], small disjuncts [68], the signifi-

cance of borderline instances to discriminate between positive and negative classes [47] and differences in the data distributions

between training and test stages [54].

In [23], the approaches to dealing with unbalanced datasets are sorted into four categories2:

• The algorithm-level category encompasses modifications of existing general learning algorithms which bias the learning

toward the minority class. Examples of this category are Hellinger Distance Decision Trees (HDDT) [14], Class Confidence Pro-

portion Decision Tree (CCPDT) [42] and Significant, Positively Associated and Relatively Class Correlated Classification Trees

(SPARCCC) [63], as well as other class-size insensitive decision trees. In other occasions misclassification costs are different

for different examples, [71] presents decision tree and Naïve Bayesian learning methods that learns with unknown costs.

• The data-level category includes pre-processing algorithms that change the prior distribution of the classes either by increas-

ing the number of minority class examples or by reducing the size of the majority class. In the first category of algorithms

the simplest technique is to randomly add examples, without caring about neighbors from other class or the overlap between

classes, some examples are Oversampling [4], SMOTE [10]. Other methods creates artificial instances taking into account these

issues: Borderline-SMOTE [31], Safe-level SMOTE [9], ADASYN [32] or Cluster Based Oversampling [38]. In the second cate-

gory Random Undersampling [3] removes random examples from the majority class and other methods like Edited Nearest

Neighbor (ENN) [69] and Tomek Links [61] are based on data cleaning techniques.

• The cost-sensitive category contains methods that assign different costs for each class. Examples include AdaCost [20], AdaC1,

AdaC2, and AdaC3 [60].

• Classifier ensembles [40,49] are combinations of several classifiers which are called base classifiers or member classifiers.

Ensembles often give better results than individual classifiers. Although ensembles were not designed to work with im-

balanced data, they have been successfully applied to this task through combination with processing techniques from the

data-level category.

According to [23], the algorithm level and cost-sensitive approaches are more problem-dependent, whereas data level and

ensemble learning approaches based on data processing are more versatile.

Ensemble methods for imbalanced learning tackle the imbalance problem using techniques like re-weighting, Oversampling

and Undersampling. These preprocessing techniques attempt to train base classifiers with a less unbalanced dataset. These pre-

processing techniques not only address the problem of imbalance, but add diversity, since each base classifier is trained on a

different version of the data set. Diversity is one of the cornerstones of ensembles. An ideal ensemble system should have ac-

curate individual classifiers and at the same time their errors should be in different instances. Several techniques have been

developed to increase the diversity of an ensemble (see Section 2.4). In this paper we argue that techniques especially designed

to increase diversity impact the performance of imbalance learning, significantly improving even the specific techniques.

To prove this claim, we conducted an experimental study where both classifiers especially designed for unbalanced sets and

standard classifiers were tested in its original form and in conjunction with several diversity-increasing techniques. Finding that

ensembles combined with diversity-increasing techniques ranked better than their original counterpart, even though the original

version was specifically designed to work for imbalanced data. We also try to provide some clues when it is more appropriate

to use diversity techniques using meta-learning, and evaluate the performance of the techniques in the presence of noisy and

borderline examples.

The rest of the paper is structured as follows: Section 2 presents some background of ensemble learning, state-of-the-art

techniques for imbalanced data, and our research hypothesis concerning diversity enhancing techniques. Section 3 shows the

experimental study and results. Section 4 enumerates the findings extracted in the experimental study. And finally, in Sections 5

and 6 the conclusions and several future lines of research are presented.

2. Ensemble learning for imbalanced problems

In this section, the concept of ensemble and the importance of diversity will be introduced, then the preprocessing techniques

and the ensembles methods for imbalanced problems used in this paper will be described. Finally, several techniques to increase

the diversity in ensembles will be explained

2.1. Ensembles of classifiers

Ensemble of classifiers is combinations of multiple classifiers, referred as base classifiers. Ensembles usually achieve better

performance than any of the single classifiers [40]. In order to build a good ensemble, it is necessary not only to build good base

classifiers, also the base classifiers must be diverse, this means that for the same instance, the base classifiers return different

outputs and their errors should be in different instances. Ensemble methods differ in the way they induce diversity between the

base classifiers. The most common approach is modifying the training set for each member of the ensemble. In Bagging [6], each

base classifier is obtained from a random sample of the training data. In the resampling version of AdaBoost [22], the data set

for each subsequent ensemble member is drawn according to a distribution of weights over the data. The weights are modified
2 Notice that these categories are not mutually exclusive, for example some cost-sensitive methods can be included in the classifier ensembles category.
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depending on the correctness of the prediction given to the example by the previous classifier. In this way, the next classifier

will give more importance to the difficult examples. MultiBoost [67] combines AdaBoost with Wagging (weighted bagging) [5],

a variant of bagging which, instead of creating samples from the original dataset, it randomly modifies the weight associated to

each instance.

2.2. Preprocessing techniques for imbalance learning

Preprocessing techniques aiming at balancing the class proportions can be easily embedded into an ensemble. The strategies

are usually to increase the size of the minority class, to reduce the size of the majority class, or do both at the same time. While

there are many variants of such preprocessing techniques, we will focus on:

• Random undersampling, that is done by eliminating random examples from the majority class. A drawback of this method is

that, potentially, it can discard useful data. However, this adverse effect is minimized when using ensembles, since instances

discarded in one iteration can remain in others. The most common implementation is to remove as much majority instances

as necessary to match the size of the minority class. When random undersampling is used in this way in the experimental

study, we name it RUS in the abbreviated names.

• Random oversampling, that creates copies of minority class instances randomly chosen. This method can lead to overfitting,

since it creates copies of existing instances.

• SMOTE, that creates artificial instances for the minority class. To create an instance from an existing one, it randomly gen-

erates a synthetic example along the imaginary line that connects the instance with one of its k nearest neighbors from the

same class. The amount of SMOTE, the number of generated synthetic instances, is a parameter of the method, whose value

differs from one study to another. In this paper, we have used the two most commonly used configurations. These are to

create as much artificial instances of the minority class as needed to double the minority class size (we call it 100% of SMOTE

and we use the abbreviation SM100 in figures and tables), and to create as much artificial instances of the minority class as

necessary to match the size of the majority class (we simply call this SMOTE, shortened as SM). SM100 only improves the

balance ratio while SM equalizes the class proportions.

• Random balance, that takes into account the fact that the optimal amount of Undersampling and Oversampling/SMOTE

is problem-specific and has considerable influence on the performance of the classifier. Random Balance [19] is designed

to be used within an ensemble, to solve the above problem, it relies on the randomness and repetition. Random balance

conserves the size of the dataset but varies the class proportions in the training sample of each base classifier using a random

ratio. This includes the case where the minority class is over-represented and the imbalance ratio is inverted. SMOTE and

random undersampling (resampling without replacement) are used to respectively increase or reduce the size of the classes

to achieve the desired ratios. The procedure is simple, having a dataset S, with minority class SP (subset of positive instances)

and majority class SN (subset of negative instances), it can be described as follows:

1. A random number between 2 and |S| − 2 is obtained. This number is going to be the new size of the majority class,

newMajSize, and accordingly the new size of the minority class, newMinSize, will be |S|−newMajSize, so that the size of

the new set, S′, will be identical to the initial set (|S|=|S′|).
2. If newMajSize< |SN|, the new majority class, S′

N, is created by random sampling without replacement the original SN so that

its final size is |S′
N
|=newMajSize, and the new minority class, S′

P
, is obtained from SP using SMOTE to get newMinSize−|SP|

new artificial instances.

3. Otherwise, S′
P is the class created as a random sample of SP, and S′

N is the class grown by SMOTE from SN, so that the final

sizes are |S′
P|= newMinSize and |S′

N|= newMajSize.

2.3. Ensemble methods especially designed for imbalance

Sometimes ensembles not designed specifically for imbalance are used in unbalanced problems. A very common way of doing

this is to combine them with one of the previous preprocessing techniques, for example, combining Bagging with Undersampling

as it is done in [3]. Other times the method is especially designed to deal with unbalanced datasets. This section lists some of the

most prominent methods specifically designed to deal with unbalanced.

• SMOTEBagging [64] is similar to Bagging except that each classifier is built with a data set with classes of equal size. The

data set in each iteration is composed as follows. A bootstrap sample is taken from the majority class, keeping the original

size, say N. The sample of size N for the minority class is created through a combination of Oversampling and SMOTE. The

Oversampling percentage varies in each iteration, ranging from 10% in the first iteration to 100% in the last, always being

multiple of ten. The rest of the positive instances are generated by SMOTE.

• SMOTEBoost [12] is a modification of the re-weighting version of AdaBoost.M2. After each boosting round, SMOTE is applied

in order to create new synthetic examples from the minority class. The synthetic instances always have the same weight, the

weight of the instances in the original dataset, while the originals have weights that are updated according to a pseudo-loss

function. Those instances that are difficult for the previous classifiers have bigger weights.

• RAMOBoost [13] is inspired by SMOTEBoost and ADASYN [32] algorithms. The main difference with SMOTEBoost is the way it

creates positive instances. While SMOTE, used within SMOTEBoost, creates instances uniformly, in RAMOBoost there exists a
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Fig. 1. Ensemble diversifying heuristics based on data manipulation.
sampling distribution based in the underlying data distribution. As a result, the artificial instances are created on the difficult

regions of the decision boundary.

• RUSBoost [57] works similarly to SMOTEBoost. This time a Random undersampling is applied after each boosting round,

removing instances from the majority class. In this case, there are no new instances. It is only necessary to normalize the

weights of the instances in the processed dataset with regard to the total sum of weights in the original dataset.

• EUSBoost [24] is based on RUSBoost and it aims to improve the original method by using evolutionary Undersampling. EUS-

Boost also tries to promote diversity using different subsets of majority class instances to train each base classifier in each

iteration.

• EasyEnsemble [43] samples several subsets from the majority class, trains an AdaBoost ensemble using repeatedly each of

these subsets, and combines the outputs of those classifiers.

• Random balance-boost [19] follows the same philosophy as SMOTEBoost and RUSBoost. Each base classifier is trained with

a dataset obtained through Random balance. The number of instances removed by Undersampling is equal to the number of

instances introduced by SMOTE. As in SMOTEBoost, synthetic instances are generated with a weight proportional to the total

number of instances. The combination of SMOTE, UnderSampling and Re-weighting provides more diversity which generally

leads to better performance in ensemble learning.

2.4. Diversity-enhancing techniques

Diversity is essential in order to build an accurate ensemble of classifiers.

Fig. 1 summarizes some widely used diversifying heuristics for building classifier ensembles based on manipulating of the

training data.

Diversity is naturally promoted by Oversampling, Undersampling or Re-weighting. Approaches which do not specifically tar-

get imbalance are often overlooked in imbalanced learning, in spite of their marked success in general multi-class classification

or regression. Among these, the vertical approach methods (A) and (B) are commonly used to introduce diversity in ensembles.

Here we propose that ensemble creation methods may offer more to imbalanced learning than what has already been achieved.

To this end, we examine four further techniques illustrated in the lower part of Fig. 1, called diversity-enhancing techniques;

these are detailed below.

We decided on the following approaches:

• Guided random sampling. In the Random Oracle ensemble [41], for each iteration, the instances are divided into two groups

using a random hyperplane, and then a classifier is built for each group. Ensemble methods based on random partitioning the

training set into several samples are often used for scaling up classifiers in large databases. [52].

• New attributes. Some methods, like Disturbing neighbors [45], expand the feature space with attributes that are not origi-

nally present in the dataset. For each base classifier in the ensemble, disturbing neighbors uses N randomly selected instances,

the disturbing neighbors, to train a 1-NN (Nearest Neighbors) classifier, then it creates N binary attributes for each instance
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(with value 1 if the corresponding disturbing neighbor is the closest to the instance, 0 otherwise) and an additional attribute

whose value is the class predicted by the 1-NN classifier, hence, the feature space is expanded with N+1 new attributes.

• Random weights. It is possible to introduce diversity by giving a different importance/weight to every attribute for each

member of the ensemble. Random Subspaces [33] can be viewed as a special case of this approach. A set of binary random

weights is used, where a weight of value 0 means that the attribute is not included in the subset for the respective ensemble

member. The result is that different classifiers are constructed using different subsets of the attributes. The Random Forest

ensemble [7] is a bagging ensemble with random trees. A random tree differs from the standard tree only by its training. In

random trees, a random subset of attributes is considered for the splitting of each node. This can be seen as a variation of

Random Subspaces but instead of using the same subset for the whole tree the set is different in each node. Proposed more

recently, the Random Feature Weights ensemble [46] associates a vector of weights with each tree of the ensemble. This

vector is used to modify the way in which the merit function of the attributes is calculated. For a training set D and a weight

vector w, the new merit function for attribute ai is defined as fw(ai, D) = wi f (ai, D), where f(ai, D) denotes the original merit

function of ai for D. Thus, the method introduces a bias which favors the selection and use of attributes with higher associated

weight. The vector of weights is randomly drawn for each tree in the ensemble, thereby introducing diversity. These weights

are real-valued (not just 0 and 1, as in Random subspaces and Random forest) so it is possible to draw a parallel with Wagging,

but using features instead of instances.

• Projections. These are frequently used to reduce the dimensionality of the data. In the context of ensemble learning, pro-

jecting can be construed as a diversifying heuristic. A well known example is Rotation Forest [55], an ensemble method for

decision trees which uses principal component analysis (PCA) to project different groups of attributes for each base classifier.

A similar approach but using supervised projections is Boosting Projections [26,27]. Random projections have been used to

provide an extra diversity and embed the original set into a space of lower dimension [56]. Random subspaces can be also

seen as a special case of Random projections.

The preprocessing techniques surrounded by a dashed line in the upper part of Fig. 1 are specifically designed for dealing

with imbalanced data. Each of these techniques alone can be used for creating an ensemble (indicated by the dashed arrows).

Here we are interested in finding out whether the preprocessing techniques (a–d) can be enhanced by (A–B), as well as

other diversity heuristics (1–4), to produce better ensembles. Many of the techniques can be used in combination, both within

their own group (for example, technique (d) described in 2.2 combines (a) with (c)) and with techniques from different groups

(Section 2.3 describes some ensemble learning methods that combine preprocessing techniques (a–d) with (A–B) sampling and

re-weighting techniques). In the experimental study we have used a representative from each diversity heuristic: from (1), Ran-

dom Oracle, from (2), Disturbing neighbors, from (3), Random Feature Weights, and from (4), Rotation Forest.

3. Experimental set-up and results

We intend to demonstrate that techniques for promoting diversity in classifier ensembles enhance the performance of be-

spoke state-ot-the-art ensembles for imbalance learning. The structure of this section is: firstly, the ensemble methods used in

the experiments, along with their basic parameters and some clarifications of its operation are listed (Section 3.1). Secondly, the

datasets used, along with their basic characteristics are shown (Section 3.2). Then (in Section 3.3), will be carried out a compari-

son between the ensembles and the same group of ensembles combined with the technique used to increase the diversity listed

in Section 2.4. The effect of the size ensemble is studied in Section 3.4.

Some ideas about when it is more appropriate to use diversity techniques taking into account complexity measures of the

datasets are provided in Section 3.5, and finally Section 3.6 explores the effect of Disturbing Neighbors in presence of noisy and

borderline instances.

3.1. Ensemble methods tested in the experimental set-up

Ensembles which only use techniques like Reweighing, Resampling, Oversampling and Undersampling will be called basic

ensembles. Fig. 2 displays the collection of basic ensemble methods examined in this study. Each of the following methods will

be combined with each of the diversity-enhancing techniques described in Section 2.4, these methods will be called enhanced

ensembles (for example, RUSBoost (RUSBo) is considered a basic ensemble, while RUSBoost combined with Disturbing Neighbors

(DN+RUSBo) is considered an enhanced ensemble). Finally ensembles using only the diversity-enhancing techniques (no resam-

pling or other preprocessing) were also tested.

These basic methods can be grouped into three different categories: x) baseline methods which are not modified in any

way to cope with imbalanced data, y) ensemble methods especially designed to cope with imbalanced data, and z) baseline

methods combined with preprocessing techniques to improve its performance in unbalanced datasets. In these methods, the

abbreviation used contains the name of the family of ensembles (e.g. E: Simple Ensemble, Ba: Bagging and Bo: Boosting),3 and
3 In a method belonging to the Simple Ensemble family, the dataset used to build each member of the ensemble is built using only the preprocessing technique

(the source of diversity in these ensembles is the preprocessing method, since SMOTE, RUS and Random Balance are randomized methods that produce a different

dataset at each iteration), while in a method that is a member of the Bagging family or the Boosting family the dataset used to build each base classifier comes

from using resampling and then the preprocessing technique.
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Fig. 2. Ensemble methods compared in this study.
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the preprocessing techniques (SM/SM100: SMOTE, RUS: Random Undersampling, RB: Random Balance). These methods are listed

below:

1. E-SM100: SMOTE is used, in each iteration, to double the size of the minority class. The number of neighbors is 5 for all

methods that use SMOTE.

2. E-SM: SMOTE is used, in each iteration, to get a minority class of the same size as the majority class.

3. E-RUS: Random Undersampling is used, in each iteration, to reduce the majority class so that equal in size to that of the

minority class.

4. E-RB: Radom Balance is used in each iteration.

5. Ba: Bagging.

6. SMBa: SMOTEBagging.

7. Ba-SM100: Bagging in which in each iteration SMOTE is used to double the size of the minority class.

8. Ba-SM: Bagging in which in each iteration SMOTE is used to get a minority class of the same size as the majority class.

9. Ba-RUS: Bagging in which in each iteration Random Undersampling is used to reduce the size of the majority class to the size

of the minority class. This method is called UnderBagging in [3,23].

0. Ba-RB: Bagging with Random Balance in each iteration.

1. ABo1: AdaBoost.M1.

2. ABo2: AdaBoost.M2.

3. MBo: MultiBoost.

4. SMBo: SMOTEBoost with the following settings: SMOTE 100% in each iteration.

5. RAMOBo: RAMOBoost with the following settings: number of synthetic instances equal to the size of the minority class,

number of neighbors used to create synthetic instances equal to 5, number of neighbors used to compute probabilities equal

to 10.

6. RUSBo: RUSBoost.

7. RBBo: Random Balance Boost.

The size of the ensembles was set to 100. Default Weka parameters were used in all the ensemble methods provided by the

library, except the number of sub committees in multiboost that was set to 10. In a further section (Section 3.4) the effect of the

size of the ensemble is studied.

The classifier used as a base classifier in all ensembles was J48, the Java implementation of Quinlan’s C4.5 [53]. As recom-

mended for imbalanced data [15], it was used with Laplace smoothing at the leaves, but without pruning and collapsing. When

C4.5 is used with this configuration, it is called C4.4 [51].
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Table 1

Characteristics of the 20 data sets from the HDDT collection. Column #E shows the number of

examples in the dataset, column #A the number of attributes, both numeric and nominal in the

format (numeric/nominal), and column IR the imbalance ratio (the number of instances of the

majority class per instance of the minority class).

Data set #E #A IR Data set #E #A IR

Boundary 3505 (0/175) 27.50 Ism 11180 (6/0) 42.00

Breast-y 286 (0/9) 2.36 Letter 20000 (16/0) 24.35

Cam 18916 (0/132) 19.08 Oil 937 (49/0) 21.85

Compustat 13657 (20/0) 25.26 Optdigits 5620 (64/0) 9.14

Covtype 38500 (10/0) 13.02 Page 5473 (10/0) 8.77

Credit-g 1000 (7/13) 2.33 Pendigits 10992 (16/0) 8.63

Estate 5322 (12/0) 7.37 Phoneme 5404 (5/0) 2.41

German-numer 1000 (24/0) 2.33 PhosS 11411 (480/0) 17.62

Heart-v 200 (5/8) 2.92 Satimage 6430 (36/0) 9.29

Hypo 3163 (7/18) 19.95 Segment 2310 (19/0) 6.00
3.2. Datasets and tools

Two collections of data sets were used. The HDDT collection4 contains 20 binary imbalanced data sets used in [15]. Table 1

shows the characteristics of this dataset collection.

The KEEL collection5 contains 66 binary imbalanced data sets (we have used 64 of them in the experiments, because two of

them were almost identical to two in the other repository) from the repository of KEEL [1]. Datasets in the KEEL collection are not

completely independent of each other. Several of them are variants of the same original dataset. Starting with a single multiclass

dataset, several binary datasets are created by grouping their classes in different ways. Table 2 shows the characteristics of this

dataset collection.

Many data sets in these two collections are available or are modifications of data sets in the UCI Repository [2].

Weka 3.7.10 [30] was used for the experiments. The results were obtained with a 5 × 2-fold cross validation [18].

Three criteria were used for evaluating the ensemble performance: The F-measure [62], the Geometric Mean [39] and the

Area Under the ROC Curve (AUC) [21].

Given a test dataset, containing P examples of the positive class and N examples of the negative class. The confusion matrix is

shown in Table 3.

The True Positive Rate (TPR) also named Sensitivity or Recall in some fields, is defined as TP/P, and False Positive Rate (FPR) is

defined as FP/N. The precision is defined as TP/(TP + FP).

Using these previous measures it is possible to define the F-measure as

FMeasure = 2 × precision × recall

precision + recall

The Geometric Mean is defined as

GMean =
√

TP/P × TN/N

In this work the ROC curve is obtained from the probabilities assigned to the instances by the classifier, each probability

threshold gives a TPR and FPR that defines a point in the curve. The AUC is computed from Wilcoxon rank s um test statistic.

3.3. Comparison between basic and enhanced ensembles

This section will show a summary of the results for each of the basic ensembles and their improved versions and a comparison

between these methods is performed. The summary is done by averaging, for each method the score across the 84 data sets.

Averaging the results is not the best way to compare multiple methods, since a big difference in a dataset can mask a general

trend in the rest. To compare multiple methods, we used average ranks [16]. Each method was assigned a rank for each data

set based on its performance, separately for each criterion. The best method obtained rank 1, the second best obtained rank 2,

etc. When there was a tie, the ranks were shared out. For example, if the top three methods for a given data set tied, each one

of them would receive rank (1 + 2 + 3)/3 = 2 for this data set. The ranks are averaged across all datasets. The methods were

arranged by their ranks, where the best methods (the ones with the lowest average ranks) were at the top of the list. Iman and

Davenport’s [37] test was applied to check whether there are any significant differences between the ranks of the compared

methods. Subsequently, Hochberg’s test [36] was carried out next to identify all methods which were not significantly different

from the winner.

This section of the experiments consisted of two parts:
4 Available at http://www.nd.edu/˜dial/hddt/.
5 Available at http://sci2s.ugr.es/keel/imbalanced.php.

http://www.nd.edu/~dial/hddt/
http://sci2s.ugr.es/keel/imbalanced.php
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Table 2

Characteristics of the data sets from the KEEL collection. Column #E shows the number of examples in the dataset, column #A

the number of attributes, both numeric and nominal in the format (numeric/nominal), and column IR the imbalance ratio (the

number of instances of the majority class for each instance of the minority class).

Data set #E #A IR Data set #E #A IR

Abalone19 4174 (7/1) 129.44 Glass4 214 (9/0) 15.46

Abalone9-18 731 (7/1) 16.40 Glass5 214 (9/0) 22.78

Cleveland-0_vs_4 177 (13/0) 12.62 Glass6 214 (9/0) 6.38

Ecoli-0-1-3-7_vs_2-6 281 (7/0) 39.14 Haberman 306 (3/0) 2.78

Ecoli-0-1-4-6_vs_5 280 (6/0) 13.00 Iris0 150 (4/0) 2.00

Ecoli-0-1-4-7_vs_2-3-5-6 336 (7/0) 10.59 Led7digit-0-2-4-5-6-7-8-9_vs_1 443 (7/0) 10.97

Ecoli-0-1-4-7_vs_5-6 332 (6/0) 12.28 New-thyroid1 215 (5/0) 5.14

Ecoli-0-1_vs_2-3-5 244 (7/0) 9.17 New-thyroid2 215 (5/0) 5.14

Ecoli-0-1_vs_5 240 (6/0) 11.00 Page-blocks-1-3_vs_4 472 (10/0) 15.86

Ecoli-0-2-3-4_vs_5 202 (7/0) 9.10 Pima 768 (8/0) 1.87

Ecoli-0-2-6-7_vs_3-5 224 (7/0) 9.18 Shuttle-c0-vs-c4 1829 (9/0) 13.87

Ecoli-0-3-4-6_vs_5 205 (7/0) 9.25 Shuttle-c2-vs-c4 129 (9/0) 20.50

Ecoli-0-3-4-7_vs_5-6 257 (7/0) 9.28 Vehicle0 846 (18/0) 3.25

Ecoli-0-3-4_vs_5 200 (7/0) 9.00 Vehicle1 846 (18/0) 2.90

Ecoli-0-4-6_vs_5 203 (6/0) 9.15 Vehicle2 846 (18/0) 2.88

Ecoli-0-6-7_vs_3-5 222 (7/0) 9.09 Vehicle3 846 (18/0) 2.99

Ecoli-0-6-7_vs_5 220 (6/0) 10.00 Vowel0 988 (13/0) 9.98

Ecoli-0_vs_1 220 (7/0) 1.86 Wisconsin 683 (9/0) 1.86

Ecoli1 336 (7/0) 3.36 Yeast-0-2-5-6_vs_3-7-8-9 1004 (8/0) 9.14

Ecoli2 336 (7/0) 5.46 Yeast-0-2-5-7-9_vs_3-6-8 1004 (8/0) 9.14

Ecoli3 336 (7/0) 8.60 Yeast-0-3-5-9_vs_7-8 506 (8/0) 9.12

Ecoli4 336 (7/0) 15.80 Yeast-0-5-6-7-9_vs_4 528 (8/0) 9.35

Glass-0-1-2-3_vs_4-5-6 214 (9/0) 3.20 Yeast-1-2-8-9_vs_7 947 (8/0) 30.57

Glass-0-1-4-6_vs_2 205 (9/0) 11.06 Yeast-1-4-5-8_vs_7 693 (8/0) 22.10

Glass-0-1-5_vs_2 172 (9/0) 9.12 Yeast-1_vs_7 459 (7/0) 14.30

Glass-0-1-6_vs_2 192 (9/0) 10.29 Yeast-2_vs_4 514 (8/0) 9.08

Glass-0-1-6_vs_5 184 (9/0) 19.44 Yeast-2_vs_8 482 (8/0) 23.10

Glass-0-4_vs_5 92 (9/0) 9.22 Yeast1 1484 (8/0) 2.46

Glass-0-6_vs_5 108 (9/0) 11.00 Yeast3 1484 (8/0) 8.10

Glass0 214 (9/0) 2.06 Yeast4 1484 (8/0) 28.10

Glass1 214 (9/0) 1.82 Yeast5 1484 (8/0) 32.73

Glass2 214 (9/0) 11.59 Yeast6 1484 (8/0) 41.40

Table 3

Confusion matrix in binary problems.

Positive prediction Negative prediction

Positive class True positive (TP) False negative (FN)

Negative class False positive (FP) True negative (TN)
1. Basic ensembles vs enhanced variants and enhanced variants among themselves. Each basic ensemble was compared

with its 4 enhanced variants, where each variant was obtained by applying the respective diversity-enhancing method. The

average ranks were calculated using five methods (four when comparing diversity techniques among themselves).

Moreover, due to most of the enhanced versions make use of some type of preprocessing, average ranks were calculated using

all of the methods that use the same diversity technique. The 17 ensemble variants and a basic ensemble that only use the

diversity technique.

2. The overall winner. In one final comparison, we select the method with best average rank for each row in Figs. 5(a), 6(a) and

7(a), and calculated the ranks using these best methods.

3.3.1. Basic ensembles versus enhanced variants and enhanced variants among themselves

The way in which the combination of the ensemble methods and the diversity technique is performed is always the same. In

each iteration a modified training set resulting from the application of Sampling, Oversampling, Undersampling, Reweighting or

the combination of two of these techniques (depending on the ensemble type) is created. This modified training set is modified

again using a diversity technique for Random Linear Oracles, Disturbing neighbors and Rotation Forest. The method Random

Feature Weights does not modify the dataset, it uses a modified decision tree.

Some of the diversity techniques have parameters. Rotation Forest has been used with the default parameters found in Weka

package. In the case of Disturbing Neighbors, as the authors of the method proposed, the dimensions used to compute the Nearest

Neighbor are randomly selected, choosing 50% of the attributes. The number of “Disturbing Neighbors” selected in each iteration

is N = 10. The Random Feature Weights implementation is based on J48 and is used with the C4.4 configuration. The exponent
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value, which control the level of randomness, was set to 1 (the value used by the authors when combined with another methods).

Random Linear Oracles do not have any parameter.

Fig. 3 shows a comparison of the basic ensemble methods with the same methods augmented with Random Oracles (1st row),

Disturbing Neighbors (2nd row), Random Feature Weights (3rd row) and Rotation Forest (4th row). There are three columns of

graphs, one for each performance measure. Each point in the graph corresponds to a pair of basic ensemble method and dataset.

The x coordinate is the value of the performance measure for the basic ensemble while the y coordinate is the value for that

method combined with the diversity technique. Points above the diagonal are the cases when the combination is better than

the basic ensemble. The graphs also show the percentage of points above and below the diagonal. In the graphs the majority of

points are above the diagonal. Nevertheless, the performance measures show different behaviors, especially for Rotation Forest:

for AUC the advantage of Rotation Forest is clear. For F-measure and G-mean, although the majority of the points are above the

diagonal, there are some points were Rotation Forest is clearly worse. These points are relatively few, if we consider that each

graph has 1428 points (17 basic ensemble methods multiplied by 84 datasets).

Fig. 4 shows the average scores across the 84 datasets for the AUC, F-Measure and G-Mean. The way to interpret the tables

is as follows: each line from the second onwards contains the values of a basic ensemble and the enhanced versions of this

ensemble. The column indicates the diversity-enhancing strategy used. So, for example, the intersection of column RFW and

row Ba contains the scores of Bagging combined with Random Feature Weights. Ensembles using only the diversity-enhancing

techniques (no resampling or other preprocessing) are shown in the first row. The full table of results can be consulted in the

supplementary material.6 For the AUC it is clear that enhanced methods, especially those that use Rotation Forest obtain better

average results. One trend that also happens when considering the F-Measure. For the G-Mean, the best average results are

obtained by methods that use Random Undersampling as a preprocessing technique (Ba-RUS and E-RUS). For this measure,

although the basic methods are improved with the diversity techniques, the selection of the basic ensemble method (row) has

more influence than the diversity-enhancing technique (column).

Figs. 5, 6 and 7 show the average ranks calculated from the area under the curve, the F-Measure and the G-Mean, respectively.

The structure of the three figures is the same, on the left, the ranks are calculated by rows. The possible ranks were from 1

to 5 (the basic ensemble method and its four combinations with diversity techniques) or 1 to 4 when the diversity techniques

are not combined with any other ensemble or preprocessing technique. Again, rank 1 would correspond to the best alternative,

and rank 5, to the worst. The intensity of the cell reflects the average rank. Cells with lower ranks (better) are filled in light gray

and those with higher ranks (worse) are filled in dark gray. It is easy to see that, in general, the methods that use a diversity

enhancing techniques perform better than those without.

The best method in each row has its rank in brackets. Those methods that are equivalent to the best one at significance 0.05

(Hochberg’s test [36]) are delimited in parentheses.

Note that there are no entries in parentheses in the first column in Fig. 5(a). This means that, for the AUC, all basic ensembles

perform significantly worse than the best enhanced variant. For the F-Measure and G-Mean criteria, improvement does not

happen for all the methods but it is clearly noticeable for the methods of interest, the best methods according to this measure.

The way to know which are the best basic ensembles is through the average ranks calculated column-wise instead of row-

wise, on the first column in the right table (Figs 5(b), 6(b) and 7(b)). Again the best method in each column has its rank in

brackets.

The best basic methods according the F-Measure are RBBo, Ba-RB, RUSBo, and Ba-SM and these methods are clearly improved

when combined with Rotation Forest strategy, as seen in Fig. 6(a).

For average ranks computed using G-Mean, the top methods are Ba-RUS, E-RB and RUSBo and these methods are improved

when combined with Random Oracles and Disturbing Neighbors.

3.3.2. The overall winner

A new average rank has been calculated from the best combinations in each row in Figs. 5(a), 6(a) and 7(a).

The results are shown in Table 4. The classic Rotation Forest on its own, alongside several methods combined with Rotation

Forest monopolize the best positions in the AUC table.

For the F-Measure, the basic Rotation Forest does not achieve a good position, although various combinations of Rotation

Forest with other ensembles still occupy the top positions. The best combinations use Oversampling strategies trying to obtain

more balance.

This difference may be due to the fact that these two measures consider different aspects: the AUC only takes into account the

probabilities given by the classifier for each instance, while the F-Measure takes into account whether the instances are correctly

labeled or not. One classifier could achieve the maximum possible AUC and simultaneously the minimum F-Measure, which

happens when none of the instances of the positive class are correctly labeled, but the probabilities assigned to the instances

of the positive class are higher than the probabilities of instances belonging to the negative class. This could be the reason why

balancing strategies have less impact when considering the AUC as an evaluation measure.

For the G-Mean, there is no clear trend. Although it seems that this time ensembles enhanced with Random Linear Oracles

and Disturbing Neighbors outperform those enhanced with Rotation Forest.
6 https://github.com/joseFranciscoDiez/research/wiki/Supplementary-Material–Diversity-imbalanced-learning.

https://github.com/joseFranciscoDiez/research/wiki/Supplementary-Material\205Diversity-imbalanced-learning
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Fig. 3. Comparison of the basic ensemble methods with their combinations with Random Oracles, Disturbing Neighbors, Random Feature Weights and Rotation

Forest. The numbers in the corners indicate the percentage of points above or below the diagonal.
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Fig. 4. Average scores in terms of the AUC (a) F-Measure (b) and G-Mean (c). The intensity of the cell reflects the score. Cells with higher values (better) are filled

in light gray and those with lower values (worse) are filled in dark gray.

Table 4

Average ranks for best methods. a) According to the AUC b) according to the F-Measure

c) according to the G-Mean. The combination of diversity techniques with other ensemble

methods will be named using the prefix O in the case of Random Linear Oracles, DN for

Disturbing neighbors and RF for Rotation Forest.

(a) AUC (b) F-measure (c) G-Mean

Method Rank Method Rank Method Rank

Rotation forest 6.774 RF+RAMOBo 6.250 O+Ba-RUS 4.607

RF+Ba-SM100 6.929 RF+RBBo 6.375 DN+RUSBo 4.750

RF+Ba 7.155 RF+SMBa 6.946 RF+E-RUS 4.768

RF+RAMOBo 7.256 RF+Ba-SM 7.375 O+E-RB 4.798

RF+ABo2 7.506 DN+Ba-RB 7.512 O+Ba-RB 5.982

RF+SMBa 7.542 RF+RUSBo 7.577 O+SMBa 6.417

RF+SMBo 7.679 RF+SMBo 7.744 O+Ba-SM 8.214

RF+E-RB 7.780 DN+Ba-SM100 9.012 DN+RBBo 8.768

RF+Ba-SM 7.940 O+E-RB 9.107 DN+RAMOBo 8.833

RF+RBBo 8.304 O+ABo2 10.679 O+E-SM 8.923

RF+Ba-RB 8.458 RF+Ba-RUS 10.762 DN+SMBo 10.560

DN+RUSBo 9.536 O+E-SM 10.857 DN+Ba-SM100 11.232

RF+Ba-RUS 10.125 DN+ABo1 11.214 DN+E-SM100 12.244

RF+E-RUS 10.280 DN+E-SM100 11.518 DN+ABo2 13.107

RF+MBo 13.482 DN+MBo 11.738 DN+ABo1 13.530

O+E-SM 13.780 Rotation forest 11.857 DN+MBo 14.399

RF+ABo1 14.780 DN+Ba 11.935 DN+Ba 14.464

RF+E-SM100 15.696 RF+E-RUS 12.542 Random oracles 15.405
3.4. Ensemble size

In the results presented until now, the ensemble size was 100. Nevertheless, different sizes can be more adequate for different

ensemble methods. In [23] two ensemble sizes were considered, 10 and 40, and some ensemble methods have better results with

a smaller size.

In order to study the behavior of this size, the five non-enhanced methods with best ranks in Figs. 5(b), 6(b) and 7(b) were

selected for each performance measure. For the selected methods, experiments were carried out using the values 10, 20, 30,…,

100 as for the ensemble size. For each ensemble method, the ten considered sizes were compared using average ranks. Figs. 8(a–



J.F. Díez-Pastor et al. / Information Sciences 325 (2015) 98–117 109

N
or

m
al

(1
) 

O
ra

cl
es

(2
) 

D
is

tu
rb

in
g 

N
ei

gh
bo

ur
s 

(3
) 

R
F

W

(4
) 

R
ot

at
io

n
F

or
es

t

RBBo

RUSBo

RAMOBo

SMBo

MBo

ABo2

ABo1

Ba-RB

Ba-RUS

Ba-SM

Ba-SM100

SMBa

Ba

E-RB

E-RUS

E-SM

E-SM100

Ensemble

A
ve

ra
ge

 r
an

ks

2.554 2.679 3.381 [1.387]

3.298 2.810 3.107 3.476 [2.310]

4.185 [1.929] 2.887 3.643 (2.357)

4.494 (2.720) (2.357) 3.143 [2.286]

4.571 2.631 3.048 2.875 [1.875]

4.548 2.720 2.631 3.280 [1.821]

4.702 2.720 3.327 2.601 [1.649]

4.524 2.863 2.732 2.827 [2.054]

4.506 2.679 3.089 2.732 [1.994]

4.179 (2.702) (2.512) 3.143 [2.464]

4.274 (2.685) 2.940 2.887 [2.214]

3.518 (2.869) (2.887) (3.131) [2.595]

4.417 2.774 3.131 2.923 [1.756]

3.744 (2.726) (2.804) 3.262 [2.464]

4.286 2.804 3.083 2.857 [1.970]

4.339 2.940 2.976 2.845 [1.899]

3.929 2.940 [2.208] 3.327 (2.595)

3.732 3.095 (2.786) 3.173 [2.214]

N
or

m
al

(1
) 

O
ra

cl
es

(2
) 

D
is

tu
rb

in
g 

N
ei

gh
bo

ur
s 

(3
) 

R
F

W

(4
) 

R
ot

at
io

n
F

or
es

t

RBBo

RUSBo

RAMOBo

SMBo

MBo

ABo2

ABo1

Ba-RB

Ba-RUS

Ba-SM

Ba-SM100

SMBa

Ba

E-RB

E-RUS

E-SM

E-SM100

Ensemble

A
ve

ra
ge

 r
an

ks

11.119 11.435 13.167 [6.762]

13.369 15.446 16.101 15.220 15.720

14.488 12.756 14.756 14.137 13.798

10.345 10.345 9.220 10.560 10.256

7.583 (7.911) (8.054) (7.851) (7.780)

9.536 (8.131) (8.024) 9.000 (7.155)

10.298 (8.095) 9.464 (7.077) (7.494)

7.500 (6.762) (6.607) (6.667) (6.952)

7.280 (6.976) (7.280) (6.173) (7.964)

8.083 9.095 (7.988) 9.304 10.089

(5.232) [6.583] [6.452] [6.119] (8.506)

12.179 14.226 13.946 14.196 14.804

9.744 9.405 10.000 9.214 (7.351)

10.905 13.000 12.214 12.839 13.542

7.607 (7.833) (7.976) (7.583) (7.524)

(6.839) (7.470) (7.625) (6.857) (7.256)

(6.815) (8.524) (7.137) 8.423 9.893

[5.196] (7.321) (6.720) (6.613) (8.155)

)b()a(

Fig. 5. Average Ranks per row (a) and column (b) (AUC). The best method in each row (a) or in each column (b) has it rank in brackets. Those methods that are

equivalent to the best one at significance 0.05 are delimited in parentheses.
c) show these average ranks for the three measures. Each graph has five lines, one for each considered ensemble method. The

values in the lines are in the range [1–10], as they are average ranks from 10 configurations.

In general, bigger ensemble sizes give better average ranks. Then, using 100 for the ensemble size instead of a smaller value

is justified. There is one clear exception, the behavior of RUSBo for the G-mean, for this method the best sizes are 20 and 30.

Interestingly, this method does not have this behavior for AUC and F-measure.

Given the unsual behavior of RUSBo with G-mean, its performance with the diversity-enhancing methods was analyzed.

Fig. 8(d) shows, for the considered ensemble sizes, the average ranks of the five RUSBo ensemble configurations. As there are

five configurations, the average ranks are in [1–5]. The behavior is rather uniform: for instance, for all ensemble sizes, DN+RUSBo

has better rank than RUSBo and RUSBo is better than RF+RUSBo. Hence, the possibility of improving an ensemble method with a

diversity-enhancing method is not restricted to a particular ensemble size.

3.5. Trying to predict when to apply diversity techniques

In the majority of the cases the diversity-enhancing technique improves the basic ensemble method, but as this improvement

is not guaranteed, in this section a study is performed that attempts to relate the meta-feature of dataset with the convenience

of whether to apply or not the techniques to increase diversity.

The meta-features were obtained using the data complexity library7 (DCoL) [48]. This software computes the list of fourteen

features shown in Table 5, which are designed to characterize the complexity of data sets for supervised learning and that were

first defined in [34,35].

In order to learn the relationship between meta-features and the best combination of ensemble and diversity technique, three

datasets, one per performance measure, were built with the following attributes:
7 This software is available at http://dcol.sourceforge.net.

http://dcol.sourceforge.net
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Fig. 6. Average Ranks per row (a) and column (b) (F-Measure). The best method in each row (a) or in each column (b) has it rank in brackets. Those methods that

are equivalent to the best one at significance 0.05 are delimited in parentheses.

Table 5

Meta-features.

ID Measure ID Measure

F1 Maximum Fisher’s discriminant ratio L3 Nonlinearity of a linear classifier

F1v Directional-vector maximumline Fisher’s discriminant ratio N1 Fraction of points on the class boundary

F2 Overlap of the per-classline bounding boxes N2 Ratio of average intra/inter class nearest neighbor distance

F3 Maximum (individual)line feature efficiency N3 Leave-one-out error rate of the one-nearest neighbor classifier

F4 Collective feature efficiency N4 Nonlinearity of the one-nearest neighbor classifier

L1 Minimized sum of the error distance of a linear classifier T1 Fraction of maximum covering spheres

L2 Training error of a linear classifier T2 Average number of points per dimension
1. The fourteen features that characterize the dataset.

2. The name of the basic ensemble.

3. The name of the technique used to increase the diversity.

4. And the class, which encodes if, for the given dataset (the one from which the first fourteen features were obtained), the

combination of the ensemble and the diversity technique gives better results than the ensemble alone. The value of this

attribute depends on the performance measure, and hence is usually different in each of the three datasets. If it is ‘yes’,

the combination of diversity technique and ensemble give better results (measured in terms of the AUC, the G-mean or the

F-measure) than using the ensemble alone, on the contrary, its value is ‘no’.

First we want to know if it is possible to establish any relationship between the meta-features and the fact that the diversity

technique improves the ensemble. To do this, we compared the performance of a weak classifier, that just predicts the mode of

the class, with others much stronger, as J48 and Rotation Forest. Results are listed in Table 6.
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Fig. 7. Average Ranks per row (a) and column (b) (G-Mean). The best method in each row (a) or in each column (b) has it rank in brackets. Those methods that

are equivalent to the best one at significance 0.05 are delimited in parentheses.

Table 6

Success percentage of the three classifiers evaluated on three meta-

learning datasets (the symbol ◦ indicates the cases where there

strong classifier is statistically better than the mode).

Dataset Mode J48 Rotation forest

Metadata for AUC 78.78 78.41 84.02 ◦
Metadata for F-measure 65.00 72.97 ◦ 78.92 ◦
Metadata for G-mean 56.29 68.26 ◦ 76.56 ◦
The statistical improvement obtained by using a classifier as J48 or Rotation Forest rather than simply predicting the mode is

an indication that there is a relationship between the meta-features of a dataset and the fact that the combination of a diversity

technique with an ensemble can give better results than the ensemble alone.

Next step is to try to learn this relationship and extract some general rules that could help us to find if a diversity technique

will improve a basic ensemble method for a given dataset. We use HotSpot [30] to learn this set of rules in a tree structure, they

identify for which meta-features there is a high probability that a certain diversity technique improves the ensemble. As well,

this rule could help us to discard diversity techniques since they do not give any improvement to the ensemble used alone.

The following are the rules found for the dataset where the improvement is measure in terms of the AUC:

Class=yes (78.78% [4500/5712])

F2 > 0.0008 (84.09% [1601/1904])

N1 <= 0.448 (86.65% [1532/1768])

N3 <= 0.304 (86.65% [1532/1768])

F1v <= 1.235 (82.46% [1514/1836])

N1 <= 0.448 (84.79% [1499/1768])

N3 <= 0.304 (84.79% [1499/1768])
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Fig. 8. Average ranks for different ensemble sizes.
The way of interpreting this rule is the following, there are 4500 instances out of 57128 for which the diversity technique

improves the ensemble (that is in 78.78% of the instances). But the percentage is even bigger (86.65%) if we consider only those

instances corresponding with datasets for which F2 is bigger than 0.0008 and N1 lower than 0.448. So the argument in favor of

using diversity techniques together with ensembles is stronger for datasets with values of F2 and N1 in these ranges. With the

dataset created using the F-Measure the following rules were obtained:

Class=yes (65% [3713/5712])

F1v <= 0.657 (78.98% [1289/1632])

F2 <= 0.271 (80.75% [1263/1564])

L1 > 0.143 (82.15% [1229/1496])

T2 <= 1250 (82.15% [1229/1496])

N2 <= 0.634 (80.75% [1263/1564])

L1 > 0.143 (82.15% [1229/1496])

T2 <= 1250 (82.15% [1229/1496])

F2 > 0.0008 (72.64% [1383/1904])

F1 > 0.185 (76.53% [1249/1632])

F2 <= 0.664 (76.23% [1244/1632])

That is, considering all datasets, the instances corresponding with configurations in which diversity improves the ensembles

alone are 65% (improvement considering the F-measure). If we consider only datasets which F1v is less than 0.657 the percentage

increase to 78.98%. If the dataset has also a F2 value lower than 0.271, there is an extra increase to 80.75%. The percentage is 82.15

if we further restrict the dataset considering only those that have also a L1 greater than 0.143 or a T2 value lower or equal to 1250.

So if we have a new dataset with values of F1v, F2, L1 and T2 verifying this inequalities, we better do not use the ensemble alone,
8 5712 instances: = 17 ensemble methods × 4 diversity techniques × 84 datasets.
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but better combined with a diversity technique (at least is the performance measure we want to improve is the F-Measure). The

rules for the dataset created using the G-Mean are:

Class=yes (56.29% [3215/5712])

F1v <= 0.657 (67.34% [1099/1632])

F2 <= 0.271 (68.41% [1070/1564])

N2 <= 0.634 (68.41% [1070/1564])

L1 > 0.287 (65.88% [1344/2040])

F3 <= 0.809 (69.49% [1323/1904])

N1 <= 0.372 (73.4% [1098/1496])

T2 > 15.385 (75.28% [1075/1428])

N4 <= 0.356 (74.44% [1063/1428])

N3 <= 0.258 (73.4% [1098/1496])

T2 > 15.385 (75.28% [1075/1428])

N4 <= 0.356 (74.44% [1063/1428])

N1 <= 0.365 (69.12% [1081/1564])

F1v <= 25.483 (71.99% [1077/1496])

T1 > 0.21 (71.99% [1077/1496])

In view of the rules obtained, if we have a dataset with low values for the directional-vector maximum Fisher’s discriminant

ratio, F1v, it would be a good idea to apply some diversity techniques.9

In the selected rules do not appear the basic ensemble nor the diversity-enhancing technique. This means that to determine

if the basic ensemble could be improved, the meta-features are more relevant than the specific ensemble methods.

Of course all the above analysis would need further investigation, for example to find relations between the ensembles and

the diversity technique more suitable when the dataset meta-features verify certain values. We include this analysis here just to

give general insights about for which datasets the use of diversity techniques has a higher expectation to improve the use the

ensemble alone.

3.6. The impact of noisy and borderline examples

Now we will test the suitability of a specific diversity technique, Disturbing Neighbors, for dealing with datasets that have

presence of noisy and borderline examples. The repository used for this purpose comes from [47]. It is a repository that contains

30 different synthetic imbalance datasets.10

The artificial data sets are all two-dimensional datasets, so the increasing diversity technique more appropriate is Disturbing

Neighbors, because it increases the diversity by adding new features to the dataset.

To summarize the results, we used average ranks. They are calculated using all the ensemble methods together with their

enhanced version using Disturbing neighbors.

Table 7 shows the results, the first column in each subtable contains the name of the method, the second its average rank and

the third value is the improvement (difference between the enhanced ensemble method and its counterpart without additional

diversity).

It is clearly seen that the methods which have been combined with Disturbing Neighbors occupy the top positions of the

ranking for the three measures. In the ranking calculated with the AUC and the other calculated with the F-Measure, all the

methods combined with Disturbing neighbors obtains a better rank than their equivalent. This is also true for 14 of the 18

methods when the average rank is calculated with the G-Mean. The extra dimensions added by Disturbing Neighbors help in the

classification task when there is presence of noisy and borderline examples.

4. Lessons learned

This paper has presented a vast experimental study in which seventeen of the state of the art methods for imbalance learning

(RAMOBoost, Random Balance Boost, RUSBoost, SMOTEBoost and many more are) tested in its basic form and enhanced in combi-

nation with four different diversifying techniques: Random Oracles, Random Feature Weights, Disturbing Neighbors and Rotation

Forest. Experiments were carried out using datasets from KEEL repository and the HDDT collection. Five different analysis were

conducted in this paper, this section enumerates them and theirs conclussions:

1. Effect of diversity techniques in combination with ensembles in imbalanced classification. Average ranks were used for mul-

tiple method comparisons. The ranks were computed over AUC, F-Measure and Geometric Mean, comparing each ensemble

method with its diversity enhanced variants. This is the summary of findings:

• In the average rank computed using the AUC and according to Hochberg’s test, all basic ensembles are significantly worse

than at least one of its enhanced counterpart.
9 A high F1v indicates that there is a vector that can separate well the classes once instances are projected on it, a low value indicates the opposite.
10 It can be downloaded from http://sci2s.ugr.es/keel/imbalanced.php#sub50.

http://sci2s.ugr.es/keel/imbalanced.php\043sub50
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Table 7

Average ranks and � (increment/decrement) of rank between basic and enhanced ensembles in presence of noisy and

borderline instances.

(a) AUC (b) F-measure (c) G-Mean

Method Rank � Method Rank � Method Rank �

DN+Ba-SM100 5.333 12.767 DN+Ba-SM 8.500 4.000 DN+E-RB 4.300 4.467

DN+Ba-SM 5.600 10.033 DN+RAMOBo 8.667 3.567 DN+E-RUS 6.067 8.933

DN+SMBa 6.700 10.433 DN+SMBa 9.367 4.933 SMBa 6.433

DN+E-RB 7.167 13.567 DN+E-SM 9.600 6.733 DN+Ba-RUS 7.433 5.567

DN+Ba-RB 8.600 10.100 DN+RUSBo 10.533 3.767 DN+SMBa 7.867 −1.433

DN+Ba 9.067 14.050 DN+Ba-RB 11.133 5.433 E-RB 8.767

DN+RUSBo 9.533 7.967 DN+RBBo 11.967 5.033 DN+E-SM 9.133 0.333

DN+RAMOBo 12.467 4.067 RAMOBo 12.233 RUSBo 9.167

DN+E-RUS 13.767 14.833 Ba-SM 12.500 E-SM 9.467

DN+E-SM 14.133 11.700 DN+SMBo 12.767 8.133 Ba-SM 12.233

DN+Ba-RUS 14.900 11.633 DN+E-RB 12.800 8.267 DN+Ba-SM 12.967 −0.733

DN+RBBo 14.933 1.933 DN+E-SM100 13.233 6.367 Ba-RUS 13

Ba-SM 15.633 RUSBo 14.300 DN+RUSBo 13.100 −3.933

DN+E-SM100 15.633 12.233 SMBa 14.300 DN+Ba-RB 13.433 0.200

DN+MBo 16 11.400 DN+Ba-SM100 15.067 2.833 Ba-RB 13.633

RAMOBo 16.533 E-SM 16.333 E-RUS 15

RBBo 16.867 Ba-RB 16.567 DN+RAMOBo 15.767 2.433

SMBa 17.133 RBBo 17 E-SM100 18.067

DN+SMBo 17.300 5.067 Ba-SM100 17.900 RAMOBo 18.200

RUSBo 17.500 DN+ABo2 18.333 9.833 DN+E-SM100 18.400 −0.333

Ba-SM100 18.100 DN+ABo1 18.867 7.467 DN+RBBo 20.100 3.467

Ba-RB 18.700 DN+MBo 19.133 7.067 DN+SMBo 20.667 4.467

E-RB 20.733 DN+Ba-RUS 19.400 6.100 Ba-SM100 21.300

DN+ABo2 21.500 4.817 E-SM100 19.600 DN+Ba-SM100 22.867 −1.567

SMBo 22.367 SMBo 20.900 RBBo 23.567

Ba 23.117 E-RB 21.067 DN+ABo2 24.100 6.167

DN+ABo1 23.533 6.067 DN+E-RUS 22.067 5.633 SMBo 25.133

E-SM 25.833 Ba-RUS 25.500 DN+ABo1 25.433 3.933

ABo2 26.317 MBo 26.200 DN+MBo 26.667 3.000

Ba-RUS 26.533 ABo1 26.333 ABo1 29.367

MBo 27.400 DN+Ba 26.567 3.833 MBo 29.667

E-SM100 27.867 E-RUS 27.700 ABo2 30.267

E-RUS 28.600 ABo2 28.167 DN+Ba 31.300 0.833

ABo1 29.600 Ba 30.400 Ba 32.133
• In the case of using the F-measure to compute the average ranks, the improvement is not statistically significant for all

cases, but the improvement exists for the best methods. The best non-enhanced methods are RBBo, Ba-RB and RUSBo, and

these methods are improved significantly when combined with the Rotation Forest strategy.

• Something similar happens when examining the rank calculated with the G-mean. Ba-RUS, E-RB and RUSBo are improved

significantly when combined with Random Oracles and Disturbing Neighbors.

2. Determination of which is the best combination to according different metrics of performance.

• According to the AUC, the overall winner is Rotation Forest.

• According to the F-measure, the best method is RF+RAMOBo (RAMOBo combined with Rotation Forest).

• According to the G-mean, the best method is O+Ba-RUS (Ba-RUS combined with Random Oracles).

Another interesting finding is that the best combinations according to the F-measure use Oversampling strategies, while the

best combinations according to the G-mean use Undersampling. The method that gets the top position in the rank according

to the AUC does not use any balancing strategy.

3. Impact of ensemble size in ensemble performance. We wanted to ensure that the performance of an ensemble increases as

its size increases (from 10 to 100). It is found that in general, bigger ensemble sizes give better average ranks. This trend is

also seen in the enhanced ensembles. So the use of ensembles of size 100 is justified. Among the evaluated methods it was

found one with a different behavior, RUSBo, whose best performance, according to the G-mean, is obtained when the size of

the ensemble is in 20 to 30 range.

4. Use of complexity metrics to predict the convenience of applying diversity-enhancing techniques to improve ensemble

results.

• It was verified that it is possible to establish relationships between complexity metrics and the fact that the combination

of a diversity technique with an ensemble can give better results than the ensemble alone.

• Using the rule-learner algorithm HotSpot it was found that, for example when the overlap of the per-class bounding

boxes is high or the directional-vector maximum Fisher’s discriminant ratio is low (which indicates the classes are hardly

separable when projected into the maximum separability vector), the application of diversity-enhancing techniques will

improve the ensemble results.
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5. Suitability of Disturbing Neighbors for dealing with noisy and borderline examples. Average ranks were used and it was found

that methods which have been combined with Disturbing Neighbors perform better than their non-enhanced counterpart

for all performance measures.

5. Concluding remarks

This article presents an exhaustive experimental study that combines techniques especially designed to work with imbal-

anced data with ensemble diversifying techniques. Examining 17 ensembles on their own and with four diversifying techniques,

using 84 imbalanced data sets, we found that enhancing diversity pays off. Diversity-enhanced ensembles ranked better than

their original counterpart. This is a curious finding because all diversity-enhancing techniques that we applied are “imbalance-

blind”. The method with best ranking in our experiments was the basic Rotation Forest according to AUC, and Rotation Forest

combined with balancing techniques according to the F-Measure. When the G-Mean is used, there is not a technique of increas-

ing diversity that highlights so clearly, but the techniques of increasing diversity clearly improve the ensembles to which they are

applied. One interesting conclusion of this study is that the results obtained for one measure can not be extrapolated to others,

and one method that is the best according to a measure, not necessarily is the best according to others.

In order to justify the ensemble size used in the experiments, it has been checked whether the ensemble size can influence

the results on the improvement that can be achieved by the diversity-enhancing techniques. In general, bigger ensemble sizes

give better average ranks. The RUSBo, according to the G-mean, is an exception to this general tendency, as its best results are for

sizes 20 and 30. However, the general tendency is observed if AUC and F-Measure are considered. This reinforces the previous

observation, the results obtained using one measure not necessarily are obtained when the others are used. Another conclusion

is that it does not matter the size of the ensemble, it is always possible to improve the results by using a diversity-enhancing

technique.

A preliminary study has been made that attempts to characterize for which datasets the use of diversity-enhancing techniques

could be beneficial. From this study it seems that the use in ensembles of these techniques is beneficial when the overlap of the

per-class bounding boxes is high or the Directional-vector maximum Fisher’s discriminant ratio is low.

6. Future research directions

One interesting future line of research would be to take this study further to investigate whether it is possible to find an

optimal combination of balancing and diversity techniques, or which is the balancing technique and diversity strategy best

suited to a problem based on certain meta-features.

Another future research line could be to investigate further the effect of the diversity techniques on the class overlapping and

small disjuncts, two of the characteristics that make imbalance problems so difficult to solve. The aim will not only be to provide

insight on why these techniques work, but also could inspire the development of new diversity strategies especially designed to

deal with imbalanced datasets.
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