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a b s t r a c t 

Over the past few decades, the remarkable prediction capabilities of ensemble methods have been used 

within a wide range of applications. Maximization of base-model ensemble accuracy and diversity are 

the keys to the heightened performance of these methods. One way to achieve diversity for training 

the base models is to generate artificial/synthetic instances for their incorporation with the original in- 

stances. Recently, the mixup method was proposed for improving the classification power of deep neu- 

ral networks (Zhang, Cissé, Dauphin, and Lopez-Paz, 2017). Mixup method generates artificial instances 

by combining pairs of instances and their labels, these new instances are used for training the neural 

networks promoting its regularization. In this paper, new regression tree ensembles trained with mixup, 

which we will refer to as Mixup Regression Forest, are presented and tested. The experimental study with 

61 datasets showed that the mixup approach improved the results of both Random Forest and Rotation 

Forest. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The idea that motivates this study, in relation to problems

hat ensemble techniques can solve, is that an increase in base-

odel diversity will improve ensemble performance, generaliza-

ion, and robustness. Diversity is a key attribute of an ensemble,

ithout which ensemble methods would not be as successful as

hey are ( Kuncheva & Whitaker, 2003 ). It can be achieved in sev-

ral ways: by using different methods for building the classifiers

n the ensemble (heterogeneous ensemble), by using methods that

uild classifiers with random components, and by using different

raining sets. The focus of this paper rests on the last strategy, in

articular, in making new instances that not found in the original

et for creating different training sets. 

Mixup has recently been proposed by Zhang, Cissé, Dauphin,

nd Lopez-Paz (2017) for training deep neural networks using com-

inations of pairs of examples and their labels. Given a training set

here each example is ( x, y ), with an input, x , and a corresponding

utput, y , then the combined examples ( ̃  x , ̃  y ) are generated as 

˜ x = λx i + (1 − λ) x j 

˜ y = λy i + (1 − λ) y j 
∗ Corresponding author. 

E-mail addresses: jjrodriguez@ubu.es (J.J. Rodríguez), mariojg@ubu.es (M. Juez- 

il), alvarag@ubu.es (Á. Arnaiz-González), l.i.kuncheva@bangor.ac.uk (L.I. Kuncheva). 

b

 

o  

e  

ttps://doi.org/10.1016/j.eswa.2020.113376 

957-4174/© 2020 Elsevier Ltd. All rights reserved. 
here ( x i , y i ) and ( x j , y j ) are two examples, drawn at random from

he training data, and λ ∈ [0, 1]. The values of λ were obtained

sing the Beta distribution: λ ~ Beta( α, α), with α ∈ (0, ∞ ). 

Some example mixup data projections can be seen in Figs. 1

nd 2 . Fig. 1 shows a single input dataset where the input vari-

ble and the output variable are represented on the x axis and the

 axis, respectively, and the instances are generated with mixup.

ig. 2 shows a couple of examples: two two-input datasets and

he mixup-generated instances. The output values of the original

atasets are in {−1 , 1 } and the output values of the datasets that

re generated are in [ −1 , 1] . Fig. 3 shows the predictions of a single

andom tree for the datasets shown in Fig. 2 . 

Mixup differs from other data augmentation approaches, in so

ar as its outputs are also combined. The combination of the out-

uts to address regression problems is a straightforward procedure.

As shown in Fig. 1 , some of the examples generated with

ixup are clearly noise. Although it can be detrimental, noise in-

ection has previously been used as a strategy for building success-

ul ensembles ( Frank & Pfahringer, 2006; Gónzalez, García, Lázaro,

igueiras-Vidal, & Herrera, 2017; Martínez-Muñoz & Suárez, 2005;

elville & Mooney, 2005 ). In mixup forests, the prevalence of these

oisy examples can be controlled with the α value and the num-

er of artificial examples that are generated. 

Ensemble techniques have successfully been applied in vari-

us domains over the past few decades. Many works and sev-

ral literature reviews have been published on both classification
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Fig. 1. A regression problem dataset with a single input ( x axis), and a single continuous output ( y axis). Artificial instances are generated with mixup for α ∈ {0.1, 0.25, 

0.4}. 

Fig. 2. Two two-inputs datasets and the datasets generated with mixup for α ∈ {0.1, 0.25, 0.4}. The output variables are shown in yellow and in blue. (For interpretation of 

the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Predictions given by a single random tree trained with the corresponding datasets from Fig. 2 . 
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Fig. 4. Beta distribution of the α values under consideration. 
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Fig. 5. Boxplots of relative performances. The start and end of the box are the first an
 Kuncheva, 2014 ) and regression ( Mendes-Moreira, Soares, Jorge, &

ousa, 2012 ) ensembles. Some illustrative examples of ensemble

pplications are detailed below. 

In industrial environments, ensembles can be used as predic-

ive models with adaptive capabilities, for example, to respond

o incidences at processing plants ( Soares & Araújo, 2015 ). Fi-

ancial forecasting with ensembles has also been a very fre-

uent research topic, among other examples, for the prediction of

rading in stocks ( Weng, Lu, Wang, Megahed, & Martinez, 2018 )

nd bankruptcy trends ( Chen, Chen, & Shi, 2020 ). It is also of

reat industrial interest, for example, in the construction indus-

ry, where ensembles have been used for the prediction of fi-

ancial distress ( Choi, Son, & Kim, 2018 ). Many techniques for

redit risk assessment have been proposed, based on both statis-
d third quartiles, the band inside the box is the median. Outliers are not shown. 
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Fig. 6. Scaled measures as a function of α. Each red parabola corresponds to a single dataset; the black parabola plots the average values. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 
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tics and Artificial Intelligence (AI) models; a task in which en-

sembles have demonstrated good performance ( Marqués, García, &

Sánchez, 2012 ). In biometrics, improved recognition rates can be

achieved using multimodal biometric systems that capture multi-

ple biometric traits, e.g. fingerprint, iris and facial features; mul-

timodal data learning in those fields can be addressed by using

ensembles ( Ross & Jain, 2003 ). The advantages and the conve-

nience of ensemble learning to learn from multimodal features

have likewise benefited several clinical practices ( Tay, Chui, Ong,

& Ng, 2013 ). The sort of highly robust system required for image

recognition tasks, such as facial recognition, can be provided by

ensembles, to address the diversity of facial expressions and ag-

ing effects ( Sirlantzis, Hoque, & Fairhurst, 2008 ). Real-life problems,

such as spam detection ( Geng, Wang, Li, Xu, & Jin, 2007 ), transla-

tion of DNA sequences ( García-Pedrajas, Pérez-Rodríguez, García-

Pedrajas, Ortiz-Boyer, & Fyfe, 2012 ), and the detection of credit-

card fraud ( Panigrahi, Kundu, Sural, & Majumdar, 2009 ), are known

as imbalanced learning problems that can also be solved using en-

semble techniques ( Galar, Fernandez, Barrenechea, Bustince, & Her-

rera, 2012 ). The mixup data augmentation strategy proposed in

this paper, might therefore lead to even better ensemble models

for the aforementioned applications, as the artificial generation of

instances has the potential to improve the performance of almost

any ensemble method. 

The contribution of this study relates to the novel use of the

mixup approach. It demonstrates that artificial examples generated

by mixup contribute to improved ensemble performance in regres-

sion tasks. Mixup is therefore considered for regression, mainly be-
 a
ause of its simplicity: it can be used with all data types and needs

o adjustments to the model. 

The rest of the paper will be organized as follows. In Section 2 ,

 brief literature review of the most relevant works in this field

ill be presented. In Section 3 , the experimental setup will be

escribed. Then the results will be presented and analyzed in

ection 4 . Finally, some concluding remarks and suggestions for fu-

ure research work will be outlined in Section 5 . 

. Related works 

Diversity between the members of an ensemble means that

hose ensembles are capable of better predictions than the indi-

idual ensemble members. One way to achieve diversity is by in-

roducing artificial examples for training, for example through the

ixup approach. Data augmentation with artificial examples has

reviously been used in many ensemble algorithms, some of which

re detailed below. 

In DECORATE (Diverse Ensemble Creation by Oppositional Rela-

eling of Artificial Training Examples) ( Melville & Mooney, 2003;

005 ), instances are generated based on the distribution of the

ata. The labels of the new instances are assigned with a prob-

bility that is proportional to the inverse of the probability as-

igned by the current ensemble, because the purpose of the artifi-

ial instances is to increase diversity. In Bagging with Input Smear-

ng ( Frank & Pfahringer, 2006 ), the generation of artificial instances

dd noise to actual instances. 
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Fig. 7. Comparison of Random Forest against variants with Mixup, with the Bonferroni-Dunn test. The marked interval spans the critical value and is centered at the mean 

rank for Random Forest. Variants with ranks outside the marked interval are significantly different ( p < . 05 ) than Random Forest. 
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f  
In imbalanced classification problems 1 , artificial examples are

ommonly used for increasing the number of instances of the mi-

ority class/es. As with mixup, in SMOTE ( Chawla, Bowyer, Hall, &

egelmeyer, 2002 ), artificial instances are also obtained by combin-

ng pairs of instances. In this case, as both instances in a pair are

f the same class, the label of the artificial instances is the same

s the instances used to generate them. SMOTE was not originally

roposed as an ensemble method and can in fact be used as a pre-

rocessing step before the construction of a model. Nevertheless, it

an also be directly used in ensembles, by training each base clas-

ifier with a different set of original and artificial instances. SMOTE

as been combined with generic ensemble methods giving rise to

MOTEBoost ( Chawla, Lazarevic, Hall, & Bowyer, 2003 ) and SMOTE-

agging ( Wang & Yao, 2009 ), among others. 

There are many other methods for balancing datasets by aug-

enting the minority classes with artificial instances ( Han, Wang,

 Mao, 2005; He, Bai, Garcia, & Li, 2008; Menardi & Torelli, 2014;

hu, Lin, & Liu, 2017 ). Some of these methods, such as SMOTE,

ave also been adapted to regression problems ( Torgo, Ribeiro,

fahringer, & Branco, 2013 ). 

Likewise, highly sophisticated approaches exist for augmenting

atasets. Most of those have been specifically designed for a given

ata type, for example, images ( Inoue, 2018; Summers & Dinneen,

019; Tokozume, Ushiku, & Harada, 2017; 2018 ). Such approaches

equire training and adjusting a model, in order to generate the

rtificial instances ( Beckham et al., 2019; Guo, Mao, & Zhang, 2018;
1 Imbalanced classification problems are those related to datasets and do- 

ains where one class has a much greater number of examples than an- 

ther ( Haixiang et al., 2017 ). 

w

indenbaum, Stanley, Wolf, & Krishnaswamy, 2018; Mayo & Frank,

017; Verma et al., 2018 ). 

Here, mixup was chosen as the simplest augmentation method

nd the significant advantage of its use with regression ensembles

f random trees (Mixup Regression Forests) will be demonstrated

n the following section. 

. Experimental setting 

The purpose of this experiment is to demonstrate the advantage

f the mixup augmentation step. Two of the best state-of-the-art

nsemble methods (singled out by extensive experimental stud-

es (Random Forest ( Breiman, 2001; Fernández-Delgado, Cernadas,

arro, & Amorim, 2014 ) and Rotation Forest ( Bagnall et al., 2018;

ardo, Diez-Pastor, García-Osorio, & Rodríguez, 2013; Rodríguez,

uncheva, & Alonso, 2006 )) are tested with and without the mixup

tep over a large collection of datasets. The experimental setup is

resented below. 

.1. Datasets 

Table 1 shows the main characteristics of the 61 regression

atasets used in the experiments. All of them are available in the

ormat used by Weka 2 ( Hall et al., 2009 ). Thirty of the 61 datasets

ere collected by Luís Torgo 3 . 
2 http://www.cs.waikato.ac.nz/ml/weka/index _ datasets.html . 
3 http://www.dcc.fc.up.pt/ ∼ltorgo/Regression/DataSets.html . 

http://www.cs.waikato.ac.nz/ml/weka/index_datasets.html
http://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
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Fig. 8. Comparison of Rotation Forest against variants with Mixup, with the Bonferroni-Dunn test. The marked interval spans the critical value and is centered at the mean 

rank for Rotation Forest. Variants with ranks outside the marked interval are significantly different ( p < . 05 ) from Rotation Forest. 
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3.2. Methods 

The mixup method is used in combination with Random For-

est ( Breiman, 2001 ) and Rotation Forest ( Pardo et al., 2013; Ro-

dríguez et al., 2006 ). Both Random and Rotation Forest are used

to transform the training dataset. In Random Forest, the dataset is

sampled, whereas in Rotation Forest, it is rotated and then sam-

pled. The mixup transformation can be done before or after the

two above-mentioned ensemble transformations. Four methods are

therefore available: 

• MixRandFor: The dataset is augmented with mixup and then

sampled. 
• RandMixFor: The dataset is sampled and then the sample is

augmented with mixup. 
• MixRotFor: The dataset is augmented with mixup and then

rotated. 
• RotMixFor: The dataset is rotated and then augmented with

mixup. 

3.3. Settings 

The experiments were performed using Weka ( Hall et al., 2009 ).

The default parameter’s values of Random Forest and Rotation For-

est were used, unless otherwise specified. For Random Forest, the

default number of random attributes is log 2 (m ) + 1 where m is the

number of attributes. For Rotation Forest, the default size for each

group of attributes is 3. The default method for constructing the

trees in Rotation Forest, which only works for classification, is J48.

Hence, REPTree, a tree method for regression, was used with no
runing, as ensembles generally work better with unstable models

nd pruning increases stability. 

The results were generated using a 5 × 2-fold cross valida-

ion. The reported values are therefore averaged values from the 10

xperiments. Three performance measures were calculated: RMSE

Root Mean Squared Error), MAE (Mean Absolute Error), and corre-

ation. 

The size of each ensemble was set at 100. The number of ar-

ificial examples to be generated was set at 50% of the training

ata size. Three values were applied (0.10, 0.25, and 0.40) for the

values (in the Beta distribution), from the recommended range

f [0.1,0,4]in ( Zhang et al., 2017 ). Fig. 4 plots the Beta distribution

or these α values. 

One option for using mixup with nominal attributes is to trans-

orm them into numeric attributes. For example, one approach is

o turn them into numerical values (that introduces an artificial

rder), and another is to turn them into binary attributes (greatly

ultiplying the attributes when there are many nominal values

er attribute). Nevertheless, the mixing of two nominal value at-

ributes was done in the experiments, by randomly selecting a sin-

le one. The probability of selecting the first nominal value is λ. 

The number of artificial examples and the α value are hyper-

arameters that can potentially improve the results when adjusted

or each dataset. 

. Results and discussion 

Tables 2 , 3 , and 4 show the results for RMSE, for MAE, and for

orrelation, respectively. 
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Table 1 

Experimental dataset characteristics. 

Dataset Examples Numeric Nominal 

2d-planes 40,768 10 0 

abalone 4,177 7 1 

ailerons 13,750 40 0 

auto-horse 205 17 8 

auto-mpg 398 4 3 

auto-price 159 15 0 

auto93 93 16 6 

bank-32nh 8,192 32 0 

bank-8FM 8,192 8 0 

baskball 96 4 0 

bodyfat 252 14 0 

bolts 40 7 0 

breast-tumor 286 1 8 

cal-housing 20,640 8 0 

cholesterol 303 6 7 

cleveland 303 6 7 

cloud 108 4 2 

cpu 209 6 1 

cpu-act 8,192 21 0 

cpu-small 8,192 12 0 

delta-ailerons 7,129 5 0 

delta-elevators 9,517 6 0 

detroit 13 13 0 

diabetes-numeric 43 2 0 

echo-months 130 6 3 

elevators 16,599 18 0 

elusage 55 1 1 

fishcatch 158 5 2 

friedman 40,768 10 0 

fruitfly 125 2 2 

gascons 27 4 0 

house-16H 22,784 16 0 

house-8L 22,784 8 0 

housing 506 12 1 

hungarian 294 6 7 

kin8nm 8,192 8 0 

longley 16 6 0 

lowbwt 189 2 7 

machine-cpu 209 6 0 

mbagrade 61 1 1 

meta 528 19 2 

mv 40,768 7 3 

pbc 418 10 8 

pharynx 195 1 10 

pole 15,000 48 0 

pollution 60 15 0 

puma32H 8,192 32 0 

puma8NH 8,192 8 0 

pw-linear 200 10 0 

pyrimidines 74 27 0 

quake 2,178 3 0 

schlvote 38 4 1 

sensory 576 0 11 

servo 167 0 4 

sleep 62 7 0 

stock 950 9 0 

strike 625 5 1 

triazines 186 60 0 

veteran 137 3 4 

vineyard 52 3 0 

wisconsin 194 32 0 
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Pairwise comparisons 

Tables 5 and 6 show the number of datasets for which the col-

mn method achieved better results than the row method. As 61

atasets were used in the experiments, a value greater than or

qual to 31 will indicate that the column method has better results

han the row method. It can be seen that the results are favorable

or variants with mixup, especially for RMSE and correlation. 

Relative scores 

Fig. 5 shows the boxplots of the relative scores, comparing the

riginal method (Random or Rotation Forest) with the variants
ith mixup. The relative score for a given measure is defined as

(b − a ) /a where a and b represent the performance of the original

ethod and the performance of the variant method, respectively.

hen the measure is an error (RMSE or MAE), negative values

f the score indicate that the variant is better. In contrast, posi-

ive values for correlation indicate that the variant is better. Each

oxplot was obtained from the relative scores of the 61 datasets.

he outliers were not included in the boxplots for the relative

cores, as their inclusion would leave the boxes very small, be-

ause the relative scores of these few datasets (outliers) are much

arger. 

The boxplots and the signs of the median values are gener-

lly favorable for the variants with mixup. The only exceptions are

andMixFor and RotMixFor with α ∈ {0.25, 0.40} for MAE. 

Influence of α
The following approach shows how the α values can affect the

erformance measures. For a given dataset, method and perfor-

ance measure, the values of the measure were calculated for α =
 . 1 , 0 . 25 , 0 . 4 and then scaled to the interval [0,1]. Then, a parabola

as fitted to the three points. Fig. 6 shows these parabolas, and a

nal parabola (shown in black) obtained by averaging the scaled

alues across all the datasets. There is no consistent pattern of the

arabolas for the individual datasets, indicating that the optimal

alue of α depends on the dataset. 

Average ranks 

Fig. 7 shows the average ranks for Random Forest and its vari-

nts with mixup. The best method is assigned rank 1, the sec-

nd is assigned rank 2, and so on. The worst method is assigned

ank 7, as we are comparing 7 alternatives for each ensemble

ethod (the original ensemble, MixXXX for three values of α,

nd XXXMix for three values of α.) With the aim of evaluating

hether some variants are significantly better than the starting

ethod (without mixup), the Bonferroni-Dunn test was performed

ver the ranks ( Demšar, 2006 ) using Random or Rotation Forest

s the control classifier. Random Forest without mixup had the

orst average rank for RMSE and correlation. The advantage of

ixup for MAE was less clear, as two variants with mixup were

orse. 

Fig. 8 shows the average ranks for Rotation Forest and its mixup

ariants. In the same way as Random Forest, Rotation Forest with-

ut mixup shows the worst average rank for RMSE and correla-

ion. The three variants with mixup were worse for MAE, while

he other three were better. 

Table 7 shows the average ranks for Random Forest, Rotation

orest, and their variants with mixup. Instead of having two in-

ependent ranks, one for Random Forest and the other for Rota-

ion Forest, as with the two previous ( Figs. 7 and 8 ), these tables

how the ranks for all the methods together. With regard to RMSE,

ll the Rotation Forest variants are above all the Random Forest

ariants. Moreover, the two original methods (without mixup) are

he last methods in their respective sets. Likewise, with regard to

AE, the Rotation Forest variants are above all the Random Forest

ariants, although there are a few variants with mixup below the

ethod without mixup. The methods without mixup for correla-

ion are below all the other methods in their set, although there

s some overlap between the two sets, because RandMixFor-0.40 is

bove RotFor. 

Figs. 9 and 10 show boxplots for the ranks of the different

atasets. Both the Random Forest and the Rotation Forest variants

re independently depicted in Fig. 9 , so the rank values range from

 to 7. The Random Forest and the Rotation Forest variants are

ointly depicted in Fig. 10 , so the rank values range from 1 to 14.

hese figures support the idea that the use of mixup variants is

dvisable. 
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Table 2 

Results for RMSE. The best result for each dataset is highlighted with a yellow background. 
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Table 3 

Results for MAE. The best result for each dataset is highlighted with a yellow background. 
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Table 4 

Results for correlation. The best result for each dataset is highlighted with a yellow background. 
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Table 5 

Comparisons of Random Forest variants. Each cell shows the number of datasets where the column method is better than the row method. 

(a) RMSE 

RandFor MixRand For-0.10 MixRand For-0.25 MixRand For-0.40 RandMix For-0.10 RandMix For-0.25 RandMix For-0.40 Total 

RandFor 36 39 45 39 39 32 230 

MixRandFor-0.10 24 29 30 27 28 28 166 

MixRandFor-0.25 21 30 31 29 25 25 161 

MixRandFor-0.40 15 29 28 25 25 20 142 

RandMixFor-0.10 22 34 31 36 25 27 175 

RandMixFor-0.25 21 31 34 34 36 33 189 

RandMixFor-0.40 28 31 34 39 34 26 192 

Total 131 191 195 215 190 168 165 

(b) MAE 

RandFor MixRand For-0.10 MixRand For-0.25 MixRand For-0.40 RandMix For-0.10 RandMix For-0.25 RandMix For-0.40 Total 

RandFor 35 36 33 33 27 28 192 

MixRandFor-0.10 25 25 28 26 22 22 148 

MixRandFor-0.25 24 34 25 29 17 19 148 

MixRandFor-0.40 27 31 35 28 16 18 155 

RandMixFor-0.10 27 34 30 31 19 18 159 

RandMixFor-0.25 33 38 42 44 40 27 224 

RandMixFor-0.40 33 38 42 42 43 33 231 

Total 169 210 210 203 199 134 132 

(C) Correlation 

RandFor MixRand For-0.10 MixRand For-0.25 MixRand For-0.40 RandMix For-0.10 RandMix For-0.25 RandMix For-0.40 Total 

RandFor 40 40 46 44 44 43 257 

MixRandFor-0.10 21 33 39 31 33 33 190 

MixRandFor-0.25 21 28 40 34 31 35 189 

MixRandFor-0.40 15 22 21 24 30 30 142 

RandMixFor-0.10 17 30 27 36 30 31 171 

RandMixFor-0.25 17 28 30 31 31 37 174 

RandMixFor-0.40 18 28 26 31 30 24 157 

Total 109 176 177 223 194 192 209 

Table 6 

Comparisons of Rotation Forest variants. Each cell shows the number of datasets where the column method is better than the row method. 

(a) RMSE 

RotFor MixRot For-0.10 MixRot For-0.25 MixRot For-0.40 RotMix For-0.10 RotMix For-0.25 RotMix For-0.40 Total 

RotFor 38 35 36 37 34 36 216 

MixRotFor-0.10 23 24 24 28 22 22 143 

MixRotFor-0.25 26 36 28 36 26 26 178 

MixRotFor-0.40 25 36 30 37 30 26 184 

RotMixFor-0.10 24 30 24 23 20 24 145 

RotMixFor-0.25 27 37 33 29 39 24 189 

RotMixFor-0.40 25 38 33 33 36 35 200 

Total 150 215 179 173 213 167 158 

(b) MAE 

RotFor MixRot For-0.10 MixRot For-0.25 MixRot For-0.40 RotMix For-0.10 RotMix For-0.25 RotMix For-0.40 Total 

RotFor 39 31 31 35 29 32 197 

MixRotFor-0.10 22 20 22 34 20 21 139 

MixRotFor-0.25 30 40 27 38 29 22 186 

MixRotFor-0.40 30 38 32 39 32 23 194 

RotMixFor-0.10 26 25 21 21 19 20 132 

RotMixFor-0.25 32 40 30 28 40 24 194 

RotMixFor-0.40 29 39 38 36 40 35 217 

Total 169 221 172 165 226 164 142 

(c) Correlation 

RotFor MixRot For-0.10 MixRot For-0.25 MixRot For-0.40 RotMix For-0.10 RotMix For-0.25 RotMix For-0.40 Total 

RotFor 40 41 41 40 42 43 247 

MixRotFor-0.10 21 30 31 33 30 29 174 

MixRotFor-0.25 20 31 31 35 25 34 176 

MixRotFor-0.40 20 30 30 31 21 29 161 

RotMixFor-0.10 21 27 26 29 23 32 158 

RotMixFor-0.25 19 31 35 40 38 32 195 

RotMixFor-0.40 18 32 27 32 29 29 167 

Total 119 191 189 204 206 170 199 
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Fig. 9. Boxplots for the ranks. The boxplots to the left refer to the Random Forest variants and those to the right refer to the Rotation Forest variants. 
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Overall, Rotation Forest shows better performance compared to

Random Forest, and mixup offers an advantage for both ensemble

methods, which has been empirically demonstrated in our experi-

ment. 

Limitations 

The scope of this study is nevertheless limited. The two pa-

rameters of the method, the α value for the Beta distribution, and

the number of synthetic examples that are generated were not ad-

justed for each dataset. Only three values of α were considered

and the number of synthetic examples was arbitrarily fixed at 50%.

Ensemble size is another parameter that can affect the results and

that can interact with the previous parameters. Moreover, the de-

fault parameter’s values for Random Forest and Rotation Forest

were used with no previous adjustment for the study. 
The mixup approach has been applied to only two ensemble

ethods, Random Forest and Rotation Forest, although it could be

pplied to other methods. For instance, another very successful

nsemble method, although not commonly used for regression, is

oosting ( Solomatine & Shrestha, 2004 ). The mixup approach can

lso be used with ensembles by combining other regression meth-

ds rather than classification trees. The usefulness of the mixup

pproach for regression ensembles with other ensembles and base

ethods is as yet unproven. 

The mixup method was the only method considered for gen-

rating artificial instances. Other methods for generating artificial

nstances might be better suited for a given dataset. 
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Fig. 10. Boxplots for the ranks. The ranks are obtained using both Random and Rotation Forests variants. 
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Table 7 

Average ranks. 

RMSE 

Method Rank 

RotMixFor-0.10 5.655738 

MixRotFor-0.10 5.786885 

MixRotFor-0.25 6.467213 

RotMixFor-0.25 6.508197 

MixRotFor-0.40 6.598361 

RotMixFor-0.40 6.770492 

RotFor 7.016393 

MixRandFor-0.40 7.893443 

MixRandFor-0.25 8.196721 

MixRandFor-0.10 8.221311 

RandMixFor-0.10 8.418033 

RandMixFor-0.25 8.893443 

RandMixFor-0.40 9.040984 

RandFor 9.532787 

MAE 

Method Rank 

RotMixFor-0.10 5.581967 

MixRotFor-0.10 5.827869 

RotMixFor-0.25 6.762295 

MixRotFor-0.25 6.811475 

MixRotFor-0.40 6.950820 

RotFor 7.106557 

RotMixFor-0.40 7.163934 

MixRandFor-0.10 7.754098 

MixRandFor-0.25 7.852459 

RandMixFor-0.10 7.885246 

MixRandFor-0.40 8.098361 

RandFor 8.540984 

RandMixFor-0.25 9.311475 

RandMixFor-0.40 9.352459 

Correlation 

Method Rank 

RotMixFor-0.10 6.016393 

RotMixFor-0.40 6.114754 

MixRotFor-0.40 6.188525 

MixRotFor-0.10 6.418033 

MixRotFor-0.25 6.549180 

RotMixFor-0.25 6.795082 

MixRandFor-0.40 7.778689 

RotFor 7.852459 

RandMixFor-0.40 7.983607 

RandMixFor-0.10 8.155738 

RandMixFor-0.25 8.213115 

MixRandFor-0.10 8.491803 

MixRandFor-0.25 8.491803 

RandFor 9.950820 
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5. Conclusions and future research 

The mixup strategy has been previously used for regularizing

deep neural networks, although this method can also be used for

increasing diversity in ensembles. In this paper, we have shown

that the performance of regression forest methods can be im-

proved by using the mixup strategy, which introduces artificial in-

stances in the datasets used for training each regression tree. The

advantages of the mixup method have been experimentally shown

for both Random Forest and Rotation Forest over a broad set of 61

datasets. Our experimental results favored the Rotation Forest and

its improved variants. 

Some limitations of the study can be approached in future

works. The mixup method has one parameter, α. We found no

clear pattern of influence for the three experimental values (0.1,

0.25, and 0.4). Adjusting α for each dataset and varying the num-
er of generated artificial instances can both potentially improve

he results. 

Mixup forest can be applied to other ensemble methods, such

s boosting variants. It can also be used with ensembles formed by

ther regression models instead of trees. 

A future research line is the adaptation of the mixup method

or classification datasets. As mentioned earlier, the use of mixup

or regression is straightforward, because the output value is con-

inuous. Nevertheless, the application of this method to classifica-

ion requires a previous decision on the best way of combining dif-

erent nominal classes. The method could also be useful in prob-

ems with several outputs, such as muti-label classification and

ulti-target regression. 

The distribution of the instances can make the mixup strategy

ounterproductive, because it may add noise in a localized region

f the space. With this in mind, further research on the convexity

f the space could help clarify the advisability of applying mixup.

oreover, more advanced data augmentation techniques that take

nto account the manifold of the actual instances would be inter-

sting to explore ( Guo et al., 2018; Verma et al., 2018 ). 

Recently, imbalance for regression has been studied

 Torgo et al., 2013 ). The evaluation of whether mixup can be

sed to work with imbalanced datasets is also a promising area

or future research. 
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