Information Processing Letters 46 (1993) 163-168

25 June 1993

Elsevier

Genetic algorithm for feature selection
for parallel classifiers

Ludmila Kuncheva
Central Laboratory of Bivinstrumentation and Automation, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Bl 105,
1113 Sofia, Bulgaria

Communicated by L. Boasson
Received 17 April 1992
Revised 26 April 1993

Abstract
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163-168.

A way to select a combination of feature subsets serving as inputs for a parallel classifier is described. A genetic algorithm
with a properly modified fitness function is used. Experimental results with three sets of real data from internal, neonatal

and aviation medicine are reported.
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1. Feature selection for parallel classifier

Parallel classification is a pattern recognition
paradigm which is a topic of renewed interest due
to the increased possibilities for parallel compu-
tation. Neural network classifiers are a persuasive
example of this tendency [10,11].

Here a parallel classification scheme is consid-
ered [7,9] which consists of r first-level decision
makers (operating on different subsets of fea-
tures) and a second-level “aggregator” of their
classification decisions. The complication of the
structure aims rather at higher classification ac-
curacy than at facilitating the computation pro-
cess. It can be formally proven that the voting
scheme of independent classifiers outperforms
the best one of them.

Let X be the set of n features describing the
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objects. The feature selection task for a conven-
tional (one level) classifier consists in choosing
the best subset of X in terms of a certain classifi-
cation criterion.

The main difficulty in feature selection is that
the searching surface is usually multimodal, and
the criterion can hardly be described analytically.
This fact precludes the application of the classical
searching tools based on criterion derivatives. It
is widely accepted that, in spite of the advanced
computational means and technologies, the ex-
haustive search amongst all subsets of features is
an extremely hard combinatorial problem. Differ-
ent suboptimal algorithms have been developed
[3,16] which help to avoid the exhaustive search
and which are supposed to lead to a suboptimal
decision.

The problem of feature selection becomes even
more cumbersome in the parallel classification
scheme because a set of subsets S ={S;,...,S,},
$; C X, is to be chosen instead of a single subset.
Let F(X) be the set of all subsets of X. The
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exhaustive search in F(X) for choosing the best
single subset requires 2" calculations of the crite-
rion value while the same operation for choosing
the best combination of subsets implies 22" calcu-
lations. The conspicuous impossibility to perform
this search in real problems determines the ac-
cent of the paper: to formulate a feature selec-
tion technique for parallel classifier.

2. Genetic algorithm for feature selection

The attractive properties of genetic algorithms
are recently being rediscovered in connection with
increased technical capabilities for parallel com-
putation [5]. Along with simulated annealing,
neural networks, tabu search, etc., genetic algo-
rithms are attributed to the wide palette of
heuristic searching tools [4]. They mimic the
mechanisms of natural reproduction processes.
Possessing a variety of assets, genetic algorithms
have demonstrated good performance in different
optimization fields [1,2,12,14,15]. In contrast to
many trivial optimization techniques, genetic al-
gorithms can operate on discontinuous, noisy,
multidimensional and multimodal surfaces.

Each point in the search space is represented
as a string (chromosome). A necessary compo-
nent of a genetic algorithm is the way of encoding
solutions on chromosomes. It is pointed out in [2]
that although any alphabet is acceptable, there is
some evidence that the binary representation (al-
phabet {0, 1}) is in a certain sense optimal. The
search among feature subsets naturally fits this
framework. In this case the chromosome directly
expresses a feature subset S, as a bit vector.
Value “0” at the ith position denotes the absence
of the ith feature from the current subset and
value “1” its presence, respectively.

A “fit” criterion J(S,) is defined to evaluate
each chromosome. In the case of feature selec-
tion this may be any measure of discrimination
power of the respective subset.

The algorithm works on a set of chromosomes
simultaneously (population set IT={S,,...,S,})
imitating the stages of evolution. A simple ge-
netic algorithm, which has been reported to per-
form well in a variety of circumstances, is de-
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scribed below with special emphasis on its imple-
mentation characteristics for feature selection.
The template from [15] is applied here:

1. Formulation of the initial population set Il =
.

2. Formulation of mating set M (the set of poten-
tial parents). The principle of the biased
roulette wheel [5] is used on the subset of the
population whose criterion value exceeds the
average. A chromosome is put into the mating
pool as much times as is the ratio of its fitness
to the average one calculated over the whole
population. The parents are then picked up at
random from the mating set.

3. Crossing-over of parent’s chromosomes. Each
randomly selected couple of parents produces
two offspring chromosomes with a probability
P. by exchanging parts of their strings. In this
way the set of offsprings O ={S,,,...,8,,} is
formed.

4. Mutation. Each bit in the offspring’s vector
switches to the opposite value with previously
defined mutation probability.

5. Combination. A new population set is consti-
tuted. There are a number of strategies for
this procedure. A “generation gap” is used in
[6] which controls the percentage of the popu-
lation to be replaced during each generation.
The model of surviving accepted here is re-
ferred to as “elitist” model [1,6] due to which
the best individuals are preserved from gener-
ation to generation. Formally, the new popula-
tion set is constructed by

m={S,18. €U0, J(S,)>J(S),
kel Viel),

where [ is an index set with card(/) =p. The
generation gap in this case is a variable and its
value depends on the rates of the offsprings.

6. Starting the next generation process. Steps 2 to
5 are repeated until a certain stop criterion is
fulfilled.

It should be emphasized that due to mutation,
each future has the potential chance to be in-
cluded in the subset under consideration at any
iteration step. The lack of this opportunity has
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always been notified as one of the main draw-
backs of other feature selection technigques.

Since the chromosomes are treated simultane-
ously the algorithm allows for parallel computa-
tion of the most time-consuming value: the crite-
rion for each chromosome.

Suppose that the set §* of the best L (L >r)
subsets has already been chosen by an exhaustive
search on F(X):

=SS, €F(X), J(S) >J(S),
kel,Viel},

where card (I) = L.

Let J,(S,,...,S,) denote the criterion assess-
ing the classification accuracy of the parallel clas-
sifier whose first-level decision makers use the
subsets S,...,S,. After the exhaustive search,
the best combination of r out of top L subsets
can be obtained, e.g., for r = 3:

To(Si1s S5 Si3)

= sup
Sk1:5k2-83E8*

Jp(Sn'ci H Sk2= Sk?) ¥

It is doubtful, however, that the classifier based
on these subsets will surpass significantly the best
single-level decision since the subsets in §* may
be dependent. This expresses the fact that the
best subset of features is hardly isolated. It is
probably surrounded with several “relatives”,
subsets with very similar structures. This case
impedes searching for independent decisions
which are to work in parallel, unless §* is suffi-
ciently large (L = r).

The most appealing property of genetic algo-
rithms in the context of parallel classifiers is that
the search is performed on a set of alternatives
simultaneously. Then the input subsets of fea-
tures for the parallel classifier can be picked up
directly from the population set. Due to the im-
plied diversity of the population and its continu-
ously increasing rating, it can be expected that
high quality, independent (to some degree) sub-
sets will be chosen. In this paper, along with the
classical criterion “probability of correct classifi-
cation”, a modified criterion is suggested. It im-
plies that the chromosomes which form the best
combination of three subsets amongst the current
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population set, supplemented with the winners
from the rest of the population and offsprings,
remain in the renewed population set, i.e. IT is
formulated by

= {Siikla Sl:k25 Si:‘3}
U{Se |8, e ITVON{SH, S5, S},
J(S) >JI(S), ke, Yiel}, (1)

where card(l) =p — 3.

This corresponds to the “elitist” model which
in this case, together with the best individual,
preserves the best triple of chromosomes.

Let @¢(F(X)) denote the set of all combina-
tions of subsets of X. Applying genetic algorithm
to it we can search for a solution at a higher level
of abstraction. The task, however, becomes too
complex because of the following reasons:

The coding of points in @ is not trivial. Sup-
pose that a simple presentation is chosen when
each subset is represented as a bit in a string.
Additional criteria should be included to shorten
the chromosome size which in this case will be of
card(F( X)) bits (e.g., for 7 features, card(F( X))
= 127).

The execution time will increase enormously
because the number of 1s in the string may ap-
pear large. To avoid this, artificial restriction
must be imposed on the chromosome, e.g., the
“active” bits to be less than 7. Moreover, the
frequent case of two-classes and majority princi-
ple of aggregation at the second level implies an
odd number of first-level decision makers (classi-
fiers). This should be somehow taken into ac-
count in formulating the chromosome.

Making allowances for all these factors, a heavy
feature selection paradigm of doubtful use can be
obtained in result. The search on F(X) with the
modified criterion (1) seems more computation-
ally simple and effective.

3. Experimental study
3.1. Data sets

Three data sets were used as described below.
(1) The first set of data was taken from [13].
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The set consists of 77 patients suffering from
duodenal ulcer which are treated by Highly Se-
lective Vagotomy (HSV). Each one is described
by 11 preoperative features transformed previ-
ously into qualitative form. The two-class prob-
lem is considered in dependence on the compli-
cations after the HSV treatment. The problem is
to preclassify the patient, i.e. to make a prognosis
about the postoperative result and to supply ad-
vice to the physician.

(2) Data for hyaline membrane discase for 78
preterm newborn infants was used. All the chil-
dren suffer from Respiratory Distress Syndrome
(RDS) caused by different disorders one of which
is Hyaline Membrane Disease (HMD). The early
recognition of the disease (in the first hours after
delivery) is extremely important since the type of
the lung ventilation depends on the etiology of
RDS. Data consists of 10 features from anamne-
sis, laboratory tests and clinical observations
which could be measured during the first several
minutes after delivery. Two classes have been
formed according to the presence/absence of
HMD as evaluated by experts.

(3) Data for hypoxic resistance of 200 healthy
male pilots examined in barocamera [8] was used.
The feature set consists of 7 features expressing
the systolic blood pressure of the pilot in 7 differ-
ent time moments during the examination. Two
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classes have been formed: good resistance to hy-
poxia and bad resistance, respectively.

The availability of three data sets from differ-
ent fields of medicine provides an opportunity to
generalize in some degree, or prevents inappro-
priate generalization of the experimental conclu-
sions.

3.2. Statement of the experiment

Four experiments were carried out with each
data set:

(E) Exhaustive search in F(X) for obtaining
the set §* of the best 10 feature subsets.

(G1) Genetic algorithm with classical crite-
rion: probability of correct classification. The es-
timate was calculated as the percent of correctly
classified objects from the sample (leave-one-out
method). The classification method was k-Nearest
Neighbors (k-NN). The size of population set was
10, although there exist some considerations in
favor of larger ones [12]. This restriction, caused
on the one hand by our acceptation that the
population size should depend on card (F(X)),
and on the other, by the limited computational
resources, led to some changes in the other pa-
rameters. Although the parameters’ values differ
significantly from the natural situation, here the
experimental template advocated in [15] was ac-

Table 1

Probability of correct classification [%]

Data set First level Exhaustive Random Genetic Genetic
decision search (E) search (R) algorithm (G1) algorithm (G2)
makers

1 1 81.8 79.7 81.8 81.7
3 85.7 87.4 86.4 87.9
5 87.8 84.3 86.5 88.2
¥ 85.7 82.3 85.7 87.3

2 1 88.5 86.7 87.7 87.7
3 92.3 90.4 91.4 93.2
5 92.3 90.6 91.6 93.2
7 91.0 90.4 91.3 923

3 1 89.5 88.9 89.5 89.5
3 91.5 91.1 91.2 92.0
5 92.5 91.6 91.6 92.4
7 92.0 91.4 91.4 92.4
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cepted, due to which the crossover probability P,
was stated to 1.0 and the mutation rate was
chosen 0.15. For the first data set the population
size chosen presents 0.49%, for the second 0.98%,
and for the third 7.8% of the respective
card(F(X)). For the first and for the second data
sets 25 generations were considered which means
that at most 12.2% and 24.4% of all possible
subsets were checked, respectively. For the third
data set the generations were 10-78% of
card(F(X)).

(G2) Genetic algorithm with the same state-
ment as described above but with the modified
criterion (1).

(R) Random search. For each data set the
same number of subsets were checked as in the
genetic algorithms. The difference was that the
formulation of the chromosomes was purely ran-
dom.

For experiments G1, G2, and R, after the
constitution of each new generation, the best
parallel classifier of 3, 5, and 7 decision makers
was detected by exhaustive search on the popula-
tion set.

Since each pass of the genetic algorithm is
unique, 10 experiments G1, G2, and R were car-
ried out for each data set. The best two-level
classification result during each experimental run
were detected and an average value was calcu-
lated for G1, G2, and R, respectively.

4. Results and discussion

Table 1 presents the results of the experi-
ments. The following conclusions may be drawn
on their basis:

(i) The parallel classifier surpasses the best
single classifier amongst the first-level compo-
nents of the scheme. The improvement, even not
very large, exists in all experiments.

(ii) Both G1 and G2 found better second-level
classifiers than E. This fact supports the hypothe-
sis that the set of the best 10 chromosomes may
consist of “relatives” which would provide depen-
dent first-level classification decisions.

(iii) The worst results were obtained by ran-
dom search which succeeded neither in detecting
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the best single chromosome nor in finding suffi-
ciently high result from parallel classifier.

(iv) A steady tendency of G2 to surpass Gl
can be observed. Although the differences are
not drastic they exist in almost all experiments.

(v) In the case of comparatively large popula-
tion size (e.g. 7.8%) a sufficient number of inde-
pendent classifiers may be contained in §*. The
greatest difference between two-level results ob-
tained by E and G2 is observed in the case with
the smallest population size (0.48%). This em-
phasizes the fact that the use of genetic algorithm
for small-scaled problems is ineffective.
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