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Abstract – The pairwise approach to cluster ensem-
bles uses multiple partitions, each of which constructs
a coincidence matrix between all pairs of objects. The
matrices for the partitions are then combined and a final
clustering is derived thereof. Here we study the diversity
within such cluster ensembles. Based on this, we pro-
pose a variant of the generic ensemble method where the
number of overproduced clusters is chosen randomly for
every ensemble member (partition). Using three artifi-
cial sets we show that this approach increases the spread
of the diversity within the ensemble thereby leading to a
better match with the known cluster labels. Experimen-
tal results with three real data sets are also reported.

Keywords: Pattern recognition, multiple classifier sys-
tems, cluster ensembles, diversity

1 Introduction
Combining the results of several clustering methods

has recently appeared as one of the branches of multiple
classifier systems [1,4–9,13,15,16]. The aim of combin-
ing partitions is to improve the quality and robustness
of the results. According to the popular “no-free-lunch”
allegory, there is no single clustering algorithm which
performs best for all data sets. Choosing a single clus-
tering algorithm for the problem at hand requires both
expertise and insight, and this choice might be crucial
for the success of the whole study. Selecting a cluster-
ing algorithm is more difficult than selecting a classi-
fier. The difficulty comes from the fact that no ground
truth is available against which to match the results.
Therefore, instead of running the risk of picking an un-
suitable clustering algorithm, a cluster ensemble can be
used [15].

Diversity plays a significant, albeit difficult to quan-
tify, role in classifier ensembles [11]. Recently, diversity
of cluster ensembles has been looked at. Fern and Brod-
ley [4] note that more diverse ensembles offer larger im-
provement on the individual accuracy than less diverse
ensembles. (We call “accuracy” of a clustering algo-
rithm the degree of match between the produced labels
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and some known cluster labels.)Here we use the Jac-
card index to measure diversity between a pair of parti-
tions. The lower the value, the higher the disagreement
between the partitions. We develop further Fern and
Brodley’s result by looking at the relationship between
diversity and the accuracy of the ensemble. Going a
step further we propose a variant of the generic pair-
wise cluster ensemble approach which enforces diversity
in the ensemble.

The next section gives the background of cluster en-
sembles. Section 3 explains four well known measures of
similarity between two partitions which can also be used
as diversity measures. Section 4 illustrates the possible
benefit of larger diversity in the ensemble. We propose
a variant of the traditional algorithm in Section 5. Con-
clusion remarks are given in Section 6.

2 Cluster ensembles

Let P1, . . . , PL be a set of partitions of a data set Z.
The aim is to find a resultant partition P ∗ which best
represents the structure of Z. There are two approaches
to building cluster ensembles studied in the recent lit-
erature.

Pairwise cluster ensembles. Figure 1 shows a
generic pairwise cluster ensemble algorithm. Given is
a data set Z = {z1, . . . , zN}. L ensemble members are
generated by clustering Z or a subsample of it. For
each clustering, a co-association matrix of size N × N

is formed [1, 5–7], denoted M (k), termed sometimes
connectivity matrix [13] or similarity matrix [15]. Its
(i, j)th entry is 1 if zi and zj are in the same cluster
in partition k, and 0, otherwise. A final matrix M is
derived from M (k), k = 1, . . . , L, called a ‘consensus
matrix’ in [13]. The final clustering is decided using M.
The number of clusters may be pre-specified or found
through further analysis of M. Fern and Brodley [4]
propose to use “soft” partitions and the resulting prob-
abilities as the entries of M (k). The (i, j)th entry in
M (k) is the probability that points zi and zj come from
the same cluster in partition k. These probabilities are
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calculated as

P (k)(i, j) =

c
∑

t=1

P (t|zi, k) × P (t|zj , k)

where c is the number of clusters and P (t|zi, k) is the
probability for cluster t given object zi in partition k.
P (t|zi, k) are produced by the clustering algorithm (e.g.,
EM for identifying Gaussian mixtures). M is obtained
as the average across the k matrices M (k).

(PAIRWISE) CLUSTER ENSEMBLE ALGORITHM

1. Given is a data set Z with N elements. Pick the en-
semble size L and the number of clusters c. Usually c is
larger than the suspected number of clusters so there is
“overproduction” of clusters.

2. Generate L partitions of Z with c clusters in each parti-
tion. Note that any of the itemized ways of building the
individual partitions can be used here. For example, k-
means clustering can be run from different initializations
or with different subsets of features.

3. Form a co-association matrix for each partition, M (k) =
{

m
(k)
ij

}

, of size N ×N , k = 1, . . . , L, where

m
(k)
ij =











1, if zi and zj are in the same cluster
in partition k,

0, if zi and zj are in different clusters
in partition k

4. Form a final co-association matrix M (consensus matrix)
from M (k), k = 1, . . . , L, and derive the final clustering
using this matrix.

Figure 1: A generic cluster ensemble algorithm.

Perhaps the simplest implementation of the generic
cluster ensemble algorithm is as follows (called “voting
c-means algorithm” in [5] and “evidence accumulation
algorithm” in [6])

1. Pick the number of overproduced clusters c, the
ensemble size L, and a threshold θ, 0 < θ < 1.

2. Run k-means L times, with c clusters, and form
M (1), . . . , M (L).

3. Calculate M = 1
L

(

M (1) + . . . + M (L)
)

.

4. “Cut” M at threshold θ. Join in the same cluster
all the points whose pairwise entry in M is greater
than θ. For all the remaining points form single-
element clusters.

This implementation is based on the majority vote.
For θ = 0.5, if points zi and zj have been in the same
cluster in the majority of the L partitions, then they
will be assigned to the same cluster in the final parti-
tion. The final number of clusters is not pre-specified;

it depends on the threshold θ and on the number of
overproduced clusters c. The combination of these two
parameters is crucial for discovering the structure of the
data. The rule of thumb is c =

√
N . Fred and Jain [6]

also consider fitting a mixture of Gaussians to Z and
taking the identified number of components as c. Nei-
ther of the two heuristics works in all the cases. Fred
and Jain conclude that the algorithm can find clusters
of any shape but it is not very successful if the clusters
are touching.

The consensus matrix M can be regarded as a simi-
larity matrix between the points on Z. Therefore, it can
be used with any clustering algorithm which operates
directly upon a similarity matrix. In fact, “cutting” M

at a certain threshold is equivalent to running the sin-
gle link algorithm and cutting the dendrogram obtained
from the hierarchical clustering at similarity θ. Viewed
in this context, cluster ensemble is a type of stacked
clustering whereby we can generate layers of similarity
matrices and apply clustering algorithms on them.

Direct optimization in cluster ensembles. The la-
bels that we assign to the c clusters are arbitrary. Thus
two identical partitions might have permuted labels and
be perceived as different partitions. Suppose that we
can solve this correspondence problem between the par-
titions. Then the voting between the clusterers would
be straightforward: just count the number of votes for
the respective cluster. The problem is that there are
c! permutations of the labels and an exhaustive experi-
ment might not be feasible for large c. Cluster ensemble
methods with direct optimization have been proposed
in [15, 17].

3 Diversity between partitions

3.1 Rand index.

Rand [14] proposes a simple measure of agreement
between two partitions A and B. Denote by n11 the
number of pairs of objects from Z which are both in the
same cluster in A and are also both in the same cluster in
B. Let n00 be number of pairs of objects from Z which
are in different clusters in A and are also in different
clusters in B. Both n00 and n11 are agreement quanti-
ties as in both partitions the pair of objects have been
found to be either similar enough so as to be placed in
the same cluster or dissimilar enough so as to be placed
in different clusters. Accordingly, we can define the two
disagreement quantities n01 and n10. Rand index is

r(A, B) =
n00 + n11

n00 + n11 + n01 + n10
=

2(n00 + n11)

N(N − 1)
. (1)

Rand index takes value 1 if the partitions agree com-
pletely (regardless of the permutation of the labels) but
does not have a constant value for the case when both
partitions are drawn at random.
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3.2 Jaccard index.

Using the same notation as for the Rand index, the
Jaccard index between partitions A and B is [3]

J(A, B) =
n11

n11 + n01 + n10
. (2)

3.3 Adjusted Rand index.

The adjusted Rand index corrects for the lack of a
constant value of the Rand index when the partitions
are selected at random [10]. Consider the confusion ma-
trix for partitions A and B where the rows correspond
to the clusters in A and the columns correspond to the
clusters in B. Denote by Nij the (i, j)th entry in this
confusion matrix, where Nij is the number of objects
in both cluster i of partition A and cluster j in parti-
tion B. Denote by Ni. the sum of all columns for row i;
thus Ni. is the number of objects in cluster i of partition
A. Define N.j to be the sum of all rows for column i,
i.e. N.j is the number of objects in cluster j in parti-
tion B. Suppose that the two partitions A and B are
drawn randomly with a fixed number of clusters and
a fixed number of objects in each cluster (generalized
hypergeometric distribution). There is no requirement
that the number of clusters in A and B should be the
same. Let cA be the number of clusters in A and cB be
the number of clusters in B. The expected value of the
adjusted Rand index for this case is zero. The adjusted
Rand index, ar, is calculated from the values Nij of the
confusion matrix for the two partitions as follows

t1 =

cA
∑

i=1

(

Ni.

2

)

; t2 =

cB
∑

j=1

(

N.j

2

)

; (3)

t3 =
2t1t2

N(N − 1)
; (4)

ar(A, B) =

∑cA

i=1

∑cB

j=1

(

Nij

2

)

− t3
1
2 (t1 + t2) − t3

, (5)

where
(

a
b

)

is the binomial coefficient a!
b!(a−b)! .

3.4 Mutual information.

A way to avoid relabeling is to treat the two partitions
as (nominal) random variables, say X and Y , and cal-
culate the mutual information between them [7,15, 16].
The mutual information between partitions A and B is1

MI(A, B) =

cA
∑

i=1

cB
∑

j=1

Nij

N
log

(

NijN

Ni.N.j

)

(6)

A measure of similarity between partitions A and B is
the normalized mutual information [7]

NMI(A, B) =
−2

∑cA

i=1

∑cB

j=1 Nij log
(

NijN

Ni.N.j

)

∑cA

i=1 Ni. log
(

Ni.

N

)

+
∑cB

j=1 N.j log
(

N.j

N

)

1By convention, 0× log(0) = 0.

If A and B are identical, then NMI takes its maxi-
mum value of 1. If A and B are independent, i.e., having
complete knowledge of partition A we still know nothing
about partition B and vice versa, then NMI(A, B) →
0.

4 Diversity in classifier ensem-

bles: an example
We consider two clustering algorithms: the standard

k-means and a pairwise cluster ensemble with the fol-
lowing experimental protocols.

k-means. The number of clusters, c, was varied from 2
to 10. For each c we ran the clustering algorithm from 10
different initializations and chose the labeling with the
minimum sum-of-squares criterion, Je [2]. To determine
the final number of clusters we took the minimum of the
Xie-Beni index, uXB(c), across c = 2, . . . , 10

uXB(c) =

∑c

j=1

∑

z∈Cj
||z − vj ||2

N(minj 6=l ||vj − vl||2)
(7)

where vj is the centroid of cluster Cj , j = 1, . . . , c, and
z ∈ Z.

Pairwise cluster ensemble. The number of overpro-
duced clusters, c, was set to 20 and the ensemble size
was L = 25. The individual ensemble members per-
formed k-means starting from different initializations.
Single link algorithm was run on the final co-association
matrix M. The largest “jump” in the distance at which
two clusters are merged was found and this determined
the final number of clusters. If this number appeared to
be too large, we conjectured that there is no reasonable
structure in the data and reassigned the final number of
clusters to 1. We used a threshold of 80% of the total
size of the data set, N . If the obtained number of clus-
ters was greater than the threshold, we abstained from
identifying a structure.

Figure 2 shows the results from applying the two
clustering methods to three artificial data sets called
four-gauss, easy-doughnut and difficult-doughnut, re-
spectively. All three sets were generated in 2-D (as plot-
ted) and then 10 more dimensions of uniform random
noise were appended to each data set. The points which
share a cluster label are joined. A total of 100 points
were generated for each distribution.

Table 1 shows the values of the similarity/diversity
measures introduced in Section 3 between the true and
the guessed labels for the three examples. The ensemble
method shows better performance on the two easier data
sets, however the similarity measures disagree on the
difficult-doughnut set.

To try to explain the inconsistent performance of the
ensemble method we calculated diversity using the Jac-
card index between every pair of partitions in the en-
semble. By analogy with the kappa-error plots [4, 12]
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Results on the four-gauss data set

Results on the easy-doughnut data set

Results on the difficult-doughnut data set

Figure 2: Data set (left plot), ensemble results (middle
plot) and k-means results (right plot) for three data sets.
100 data points were generated for each distribution.

Table 1: Similarities between the original and the ob-
tained labels for the example in Figure 2

Data Method Rand Jaccard Adj NMI final
set Rand c

four- k-means 0.62 0.39 0.33 0.58 2
gauss ensemble 1.00 1.00 1.00 1.00 4
easy- k-means 0.75 0.55 0.43 0.52 4
doughnut ensemble 1.00 1.00 1.00 1.00 2
difficult- k-means 0.65 0.49 0.34 0.39 3
doughnut ensemble 0.49 0.49 0.00 0.00 1

we plotted each pair as a point in a 2-D space where
the x-axis is the Jaccard index between the pair (the
smaller the index, the more diverse the pair) and the
y-axis is the “Accuracy” of the pair. The accuracy of
partition Ci is the Jaccard index between the partition
and the true labels. The y-coordinate of the pair is
the averaged accuracy of the two partitions. Figure 3
shows the Diversity-Accuracy plots for the three data
sets. We changed the ensemble parameter c (overpro-
duced clusters) to take values 4, 8, and 20, hence there
are three sets of points in each plot. The accuracy of
the ensemble (Jaccard index between the ensemble out-
put and the true labels) is shown in boldface above the
respective number of overproduced clusters c.

Each plot is an illustration rather than a summary of
an experiment because it is produced from three runs
of the ensemble algorithm, one for each c. The figures
for the two simple data sets show that the lower the
agreement is (Jaccard index), the larger is the ensemble
match of the true labels. The accuracies of the ensemble
members vary significantly depending on the number of
overproduced clusters. Note that, contrary to the sim-

ilar intuition for classifier ensembles, in cluster ensem-
bles the low individual accuracy does not seem to have a
strong adverse effect on the ensemble performance. The
difficult-doughnut plot (Figure 3, right) shows an incon-
sistent pattern. The best ensemble accuracy of 0.76 is
achieved for c = 8, where the diversity is not as high as
for c = 20 (the cloud for c = 8 is situated more to the
right).

5 The proposed variant

In order to make use of both findings from the pilot
example in Section 4, we propose a variant of the pair-
wise cluster ensemble algorithm. The difference from
the generic algorithm in Figure 1 is that instead of se-
lecting c in advance, we chose it at random for each
ensemble member. The rationale for selecting c at ran-
dom is to induce extra diversity in the ensemble.

Figure 4 shows the Diversity-Accuracy plot for the
proposed variant and the three data set. The elongated
clouds of points show that the ensembles contain variety
of pairs, both with high diversity and low diversity. The
pairs which have smaller Jaccard index (higher diver-
sity) tend to be more accurate, which might contribute
to the overall ensemble accuracy, as suggested by the
results in Figure 3. The ensemble accuracy is shown in
the plots in boldface. We note again that each plot gives
the results of a single run, therefore a direct comparison
between the accuracies in Figure 3 and Figure 4 is not
justified.

We applied k-means, the standard pairwise cluster en-
semble and the proposed method to 100 random gener-
ations from the distributions of the three data set. The
averaged results are shown in Table 2. The maximum
value for each measure is shown in boldface. A star next
to it indicates that its difference with the second best
measure is statistically significant (α = 0.05).

Table 2 shows also the accuracies of the three cluster-
ing methods applied 100 times on three data sets from
UCI

The results suggest that if there are distinguishable
clusters in the data the proposed algorithm can identify
them more accurately (in general) than k-means and
the standard pairwise cluster ensemble algorithm. The
results with the real data sets are rather disappoint-
ing. The reason for this might be that the class labels
do not necessarily correspond to natural clusters. For
the iris data, for example, there are two distinguishable
clusters, one containing one of the classes and the other
containing the remaining two classes. A successful clus-
tering algorithm will report two clusters and will have
low recognition rate if measured as the match with the
true class labels. Therefore our view is that, in compar-
ing clustering algorithms, more weight should be put on
the results with data sets where test cluster structures
are specifically designed or known.
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Figure 3: Diversity-Accuracy plot: four-gauss (left), easy-doughnut (middle) and difficult doughnut (right)
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Figure 4: Diversity-Accuracy plot with the proposed pairwise cluster ensemble. four-gauss (left), easy-doughnut
(middle) and difficult doughnut (right)

6 Conclusions

We propose a variant of the pairwise cluster ensemble
paradigm where the number of overproduced clusters is
chosen at random for each ensemble member. This mod-
ification is based on an anecdotal observation from an
example with three artificial data sets: diverse ensem-
bles tend to be more accurate than non-diverse ensem-
bles even if the latter consist of more accurate individual
members (Figure 3). The results with artificial and real
data demonstrate the advantage of using diverse cluster
ensembles (Table 2).

We note that in this study we were not aiming at
finding the best possible clustering result but at show-
ing how diversity can be exploited for improving on the
clustering quality. Therefore we used the simplest pos-
sible clustering algorithm to design the ensemble mem-
bers. More elaborate ensemble members may lead to a
better overall cluster ensemble.

Another weak point of the proposed method, shared
by the pairwise cluster ensemble paradigm in general,
is that they do not scale well for large data sets. The
co-association matrix M is of size N ×N and running a

single-link clustering on it may be too time-consuming.
Using the threshold θ as in the majority vote algo-
rithm may partly solve the problem. However, θ has to
be specified and this requires additional analyses. We
found that for θ = 0.5 the results were inferior to those
when the number of clusters was found by cutting the
dendrogram at the largest distance jump.

The ensemble members can be built so as to take
into account possible large dimensionality of the feature
space. The solution proposed in [4] is to use random
linear projections in lower-dimensional spaces and run
the clustering in these spaces. Unlike data size scala-
bility, feature size scalability can be incorporated in the
proposed variant.

To alleviate the computational burden of the single
link and improve the data size scalability of the pairwise
cluster ensemble methods we are planning to investigate
possible ways to select cluster prototypes. Thus the co-
association matrix M will be much smaller. Another
benefit from prototype selection would be that separate
data sets may be used for building the ensemble mem-
bers (object-distributed clustering).

An interesting further avenue is designing a cluster
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Table 2: Similarities between the original and the obtained labels for the artificial and real data.

Data set Features Clusters/ Method Rand Jaccard Adjusted NMI Guessed
classes, c Rand c

four- k-means 0.68 0.48 0.43 0.64 2.30
gauss 12 2 ensemble 0.93 0.85 0.86 0.91 3.60
(N = 100) proposed 0.97* 0.94* 0.94* 0.96* 3.9
easy k-means 0.74 0.55 0.49 0.56 4.55
doughnut 12 2 ensemble 0.93 0.90 0.87 0.88 2.29
(N = 100) proposed 0.93 0.87 0.86 0.88 2.83
difficult k-means 0.70 0.52 0.40 0.47 3.94
doughnut 12 2 ensemble 0.63 0.57 0.26 0.29 2.84
(N = 100) proposed 0.77* 0.66* 0.53* 0.56* 3.61

k-means 0.60 0.34* 0.24* 0.38* 3.73
glass 9 6 ensemble 0.60 0.30 0.19 0.31 4.20
(N = 214) proposed 0.56 0.31 0.18 0.29 4.77

k-means 0.76 0.57 0.54 0.66 2.00
iris 4 3 ensemble 0.78 0.59 0.56 0.73 2.41
(N = 150) proposed 0.78 0.60 0.57 0.73 2.00

k-means 0.67* 0.47* 0.37* 0.43* 2.00
wine 13 3 ensemble 0.62 0.31 0.19 0.30 5.17
(N = 178) proposed 0.63 0.35 0.24 0.33 3.49

ensemble algorithm using the boosting philosophy, i.e.,
explicitly or constructively based on diversity.
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