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Abstract. We address adaptive classification of streaming data
in the presence of concept change. An overview of the machine
learning approaches reveals a deficit of methods for explicit change
detection. Typically, classifier ensembles designed for changing
environments do not have a bespoke change detector. Here we take a
systematic look at the types of changes in streaming data and at the
current approaches and techniques in online classification. Classifier
ensembles for change detection are discussed. An example is carried
through to illustrate individual and ensemble change detectors for
both unlabelled and labelled data. While this paper does not offer
ready-made solutions, it outlines possibilities for novel approaches
to classification of streaming data.
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1 INTRODUCTION

It has been argued that the current state-of-the-art in pattern recog-
nition and machine learning is falling short to answer modern chal-
lenges in classification [12]. Among these challenges is classification
of streaming data, especially when the data distribution changes over
time. The ideal classification scenario is to detect the changes when
they come, and retrain the classifier automatically to suit the new dis-
tributions. Most methods for novelty detection rely on some form of
modelling of the probability distributions of the data and monitoring
the likelihood of the new-coming observations [27]. These methods
work well for small number of features and static distributions. They
typically require access to all past data without strong considera-
tions about processing time. Detecting changes in multi-dimensional
streaming data has been gaining speed in recent years [25, 36]. The
most useful indicator of adverse change, however, is a peak or a
steady upward trend in the running error of the online classifier (or
classifier ensemble). Thus the change detection method receives as
input a binary string (correct/wrong label), and raises an alarm if a
“sizable” increase in the error rate has occurred. Simple as it looks,
the problem of designing a reliable and, at the same time, sensitive
change detector is far from being solved.

2 A LANDMAP OF CLASSIFICATION
APPROACHES FOR STREAMING DATA

The approaches to handling concept drift in streaming data can be
categorised with respect to the following properties
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• Instances versus batches of data.Streaming instances of data can
be converted into streaming batches or “chunks” of data. The
reverse is also possible but batch data usually comes in mas-
sive quantities, and instance-based processing may be too time-
consuming.

• Explicit versus implicit change detection.After explicit change
detection, action is taken, for example, setting up a window of
latest data to re-train the classifier. Implicit detection is equiva-
lent to using a forgetting heuristic regardless of whether or not
change is suspected. For example, using an online classifier en-
semble, the weights of the ensemble members are modified after
each instance, based on the recent accuracy records of the ensem-
ble members. Without concept drift, the classification accuracy
will be stable and the weights will converge. Conversely, if change
does occur, the weights will change to reflect it without the need
of explicit detection.

• Classifier-specific versus classifier-free.In the classifier-specific
case, the forgetting mechanism can only be applied to a chosen
and fixed classifier model [1,3] or classifier ensemble [30]. In the
classifier-free case any classifier can be used because the change
detection and the window update depend only on the accuracy of
the classification decision, and not on the model [10,20].

• Classifier ensembles versus single classifiers.A categorisation of
classifier ensemble methods for changing environment is offered
in [22]. The methods are grouped with respect to how they adapt
to the concept drift: by updating the combination rule for fixed
classifiers (“horse racing”); by using adaptive online classifiers as
the ensemble members; and by changing the ensemble structure
(“replace the loser”).

Explicit or implicit detection of concept drift can be based upon
change in:

A. Probability distributions. If the class-conditional distributions or
prior probabilities for the classes drift away from their initial values,
the new data will not fit the old distributions. Based on how well the
assumed distribution accommodates most recent data, a change can
be detected and old data should be forgotten [4,7,9,11,27,33]. Meth-
ods for change detection in this case include estimating the likelihood
of new data with respect to the assumed distributions, and comparing
the likelihood with a threshold.

B. Feature relevance.A concept drift may lead to a different rel-
evance pattern of the features describing the instances. Features or
even combinations of attribute values that were relevant in the past
may no longer be sufficiently discriminative [3, 8, 13, 40]. Keeping
track on the best combination of predictive features (clues) makes
it possible to train an up-to-date classifier for the most recent data
distribution.



C. Model complexity.Some classifier models are sensitive to change
in the data distribution. For example, explosion of the number of
rules in rule-based classifiers or the number of support vectors in
SVM classifiers may signify concept drift.

D. Classification accuracy.This is the most widely used criterion
for implicit or explicit change detection. Included in this group
are most ensemble methods for changing environments: Winnow
variants [24, 28], AdaBoost variants [5, 30], “replace-the-loser”ap-
proaches [21,22,34,35,39]. Many single classifier models also eval-
uate the accuracy either to select the window size for the next classi-
fier [2,10,18–20,23] or to update the current model [1,15,41].

3 TYPES OF CHANGES AND THEIR
DETECTION

Change may come as a result of the changing environment of the
problem (we call this “novelty”), e.g., floating probability distribu-
tions, migrating clusters of data, loss of old and appearance of new
classes and/or features, class label swaps, etc.
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Figure 1. Types of concept change in streaming data

Figure 1 shows four examples of simple changes that may occur in
a single variable along time. The first plot (Noise) shows changes that
are deemed non-significant and are perceived as noise. The classifier
should not respond to minor fluctuations, and can use the noisy data
to improve its robustness for the underlying stationary distribution.
The second plot (Blip) represents a ‘rare event’. Rare events can be
regarded as outliers in a static distribution. Examples of such events
include anomalies in landfill gas emission, fraudulent card transac-
tions, network intrusion and rare medical conditions. Finding a rare
event in streaming data can signify the onset of a concept drift. Hence
the methods for online detection of rare events can be a component
of the novelty detection paradigm. The last two plots in Figure 1
(Abrupt) and (Gradual) show typical examples of the two major types
of concept drift represented in a single dimension.

3.1 Rare events detection in batch data

Finding outliers in batch 1-dimensional static data has a longstanding
history within statistical literature [14]. Hodge and Austin [14] point
out that there is no universally accepted definition of outlier, and that
alternative terminologies pervade in the recent literature, e.g., novelty
detection, anomaly detection, noise detection, deviation detection or
exception mining. Here we adopt the following definition: “An out-
lier is an observation (or subset of observations) which appears to be
inconsistent with the remainder of that set of data.” In this simplest
set up, one can model the relevant probability distributions and cal-
culate the likelihood of the suspect observations. A threshold on this
likelihood will determine whether an observation should be marked
as an outlier. Outlier detection methods for static data typically as-
sume unlimited (finite) computation time, and unrestricted access to
every observation in the data.

In multi-dimensional static data, outliers are not as obvious. Such
outliers, e.g., fraudulent telephone calls, may need to be labelled by
hand and communicated to the system designer for an outlier de-
tection algorithm to be trained. The main difficulty compared to the
one-dimensional case is that the approximation of multi-dimensional
probability density functions is not as trivial. Detecting outliers in
multidimensional batch data can be approached as a pattern recogni-
tion task. Assuming that outliers are very rare, the data can be used
to train the so called “one-class classifier”. In a way, the training will
lead to a form of approximation of the pdf for class “norm” or will
evaluate geometrical boundaries in the multi-dimensional space, be-
yond which an observation is labelled as an outlier [16,26,38]. Alter-
natively, the probability density functions of the individual variables
can be modelled more precisely, and an ensemble of one-class clas-
sifiers may be more accurate in identifying rare events [6,37].

3.2 Novelty (concept drift) detection in streaming
data

For streaming data, the one-dimensional change detection has been
extensively studied in engineering for the purposes of process qual-
ity control (control charts). Consider a streaming line of objects with
probability p of an object being defective. Samples ofN objects
(batches) are taken for inspection at regular intervals. The number
of defective objects is counted and an estimatep̂ is plotted on the
chart. It is assumed that the true value ofp is known (from prod-
uct specification, trading standards, etc.) Using a threshold offσ,
whereσ =

√

p(1 − p)/N , a change is detected if̂p > p + fσ.
This model is known asShewhartcontrol chart, or alsop-chart when
binary data is being monitored. The typical value off is 3, but many
other alternative and compound criteria have been used2. Better re-
sults have been reported with the so called CUSUM charts (CUmula-
tive SUM) in terms of detecting small changes [29,32]. Reynolds and
Stoumbos [31] advocate another detection scheme based on Wald’s
Sequential Probability Ratio Test (SPRT). SPRT charts are claimed
to be even more successful than CUSUM charts.

Finding rare events in multi-dimensional streaming data, and espe-
cially when changing environments may be present, has not been sys-
tematically explored. While there are tailor-made solutions for spe-
cific problems, new technologies are still in demand. The prospec-
tive solutions may draw upon sources of information A-D detailed in
Section 2.

4 CLASSIFIER ENSEMBLES FOR CHANGE
DETECTION

Note that the change-detection process is separate from the classi-
fication. Below we illustrate the operation of the classifier equipped
with a change detector. Upon receiving a new data pointx the follow-
ing set of actions takes place before proceeding with the next point
in the stream:

(1) The classifier predicts a label forx.

(2) The true label is received.

(3) x, the predicted and the true labels are submitted to the change
detector.

(4) If change is detected, the classifier is re-trained.
The classification of a data point from the stream is shown dia-

grammatically in Figure 2.

2 http://en.wikipedia.org/wiki/Control_chart
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Figure 2. Online classification with explicit detection of concept change.
Notations:̂l(x) is the class label assigned by the classification block (a

single classifier or an ensemble);l(x) is the true label ofx received after the
classification. The result of the change detection is an action related to the

classifier training.

The ideal detector will signal a change as soon as it occurs (true
positive) and will not signal false changes. In practice, the data
needed to detect the change come after the change, so a delay of
∆ observations is incurred. The expected number of batches of data
to detection is called the Average Run Length (ARL) in control chart
literature. Here we are interested in the average number of observa-
tions to detection. The desired characteristics of a change detector
are∆true + → 0 and∆false +→ ∞. Hence change detectors can
be compareed with respect to their∆s

While classification ensembles are a popular choice now for clas-
sification of streaming data with concept drift, explicit change detec-
tion is usually only mentioned on the side. We are interested in the
change detector, and in the possibility to implement it as a “detection
ensemble”.

4.1 Detection from unlabelled data

Changes in the unconditional probability distribution may or may
not render the current classifier inaccurate. Consider the following
example. In a classification problem with two equiprobable Gaussian
classes, both classes migrate apart, symmetrically about the optimal
discriminant line. Suppose that the perfect classifier has been trained
on the original distributions. Even though there are changes in the
underlying probability density function (pdf), the classifier need not
change as it will stay optimal.

When will change detection from unlabelled data be useful? Here
are three possible answers:

1. More sensitive to error.When change in the distributions can be
detected early to herald a future error change.

2. Label delay.The labels are not available at the time of classifica-
tion but come with a substantial delay. For example, in applying
for a bank loan, the true class label (good credit/bad credit) be-
comes known two years after the classification has taken place
[17].

3. Missed opportunities.The chance to improve the classifier may be
easily ignored if only labelled data is used for the change detec-
tion. It is always assumed that a change will adversely affect the
classifier, giving raise to the classification error. Consider again
the example with the two equiprobable Gaussian classes. Suppose
now that one of the classes migrates away from the discrimination
line, while the other stays in its original place. The classification
error of the initial classifier will drop a little because there will be
much fewer errors from the migrated class. In this case, however,
if change is not detected, we are missing the opportunity to train a
new classifier with much smaller error.

The most popular method for detecting change from unlabelled
streaming data is to monitor the cluster structure of the data and sig-
nal a change when a “notable” change occurs, e.g. migration of clus-
ters, merging, appearance of new clusters, etc. The monitoring can

be done using a sliding window of fixed size to re-calculate the clus-
ter parameters. These parameters are then compared with the previ-
ous ones. If the difference exceeds a given threshold, change is sig-
nalled. More formally, the cluster-monitoring approach can be cast
as fitting a mixture of Gaussians and monitoring the parameters, e.g.,
means of the components (centres of the clusters), covariance matri-
ces (shapes of the clusters) or mixture coefficients (cluster density).
The likelihood of the sample in the window can be calculated. There
are at least two parameters of the algorithm that need to be set up in
advance: the size of the sliding window and the threshold for com-
parison of the latest likelihood with the old one. This makes way for
an ensemble approach.

An ensemble for change detection from unlabelled data can be
constructed by putting together detectors with different parameter
values. An example is discussed next. Figure 3 shows the “old” and
the “new” distributions.

Unlabelled Labelled

(a) Old (b) New (c) Old (d) New

Figure 3. Old and new distributions, with and without labels

First, 400 i.i.d data points are generated from the old distribution,
followed by 400 points from the new distribution. The classes (black
and green) are generated with equal prior probabilities. The follow-
ing protocol is used. The firstM observations are taken as the first
windowW1. K-means clustering is run on this data, where the num-
ber of clusters,K is fixed in advance (we choseM = 20, K = 2). It
can be shown that, under some basic assumptions, the log-likelihood
of the data in windowWi is related to the sum of the distances of
the data points to their nearest cluster centre. We compare the mean
log-likelihood of windowWi (Li) with the mean log-likelihood of
the stream so far (̄Li). Change is signalled ifLi < L̄i + 3σi/

√
M ,

whereσi is the standard deviation of the log-likelihood up to pointi.
The cluster means are updated after each observation. Figure 4 shows
the running mean (total average,L̄i), the mean of the log-likelihood
of the moving window (Li), the change point at observation 400, and
the detected changes.
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Figure 4. Change detection (single detector) from unlabelled data using
the likelihood of a data window of sizeM = 20.

The detection pattern is not perfect. There were 4 false detections
in this run (observations 299-302), coming before the true change.
On the other hand, after the change, consistent detection is signalled
for all observations from 414 to 426. Later on, since there is no for-



getting in this scenario, the means start moving towards the second
distribution, and the log-likelihood will eventually stabilise.

The benefit of using an ensemble is demonstrated in Figure 5.
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Figure 5. Single and ensemble detectors:unlabelleddata. The numbers in
brackets show in how many out of the 100 runs the respective detector has

missed the change altogether.

All values of M = {5, 10, 15, 20, 25} andK = {2, 3, 4} were
tried, resulting in 15 individual detectors. One hundred runs were
carried out with each combination(M, K) with different data gen-
erated form the distributions in question. The dots in the figure cor-
respond to the individual detectors, where the false positive rate and
the true positive detection times were averaged across the 100 runs.
An ensemble was created by pooling all 15 individual detectors. The
ensemble signals a detection if at least two individual detectors sig-
nal detection. The star in the figure shows the ensemble detector. The
number in brackets shows the number or runs, out of 100, where no
change was detected after observation 400. Better detectors are those
that have both small false positive rate and small time to detection
∆true +. The ensemble has the smallest time to detection. While its
false detection rate is not the best, the ensemble missed only one
change

4.2 Detection from labelled data

The strongest change indication is a sudden or gradual drop in the
classification accuracy, consistent over a period of time. An ensem-
ble detector can make use of different window sizes, thresholds or
detections heuristics. To illustrate this point we continue the exam-
ple shown in Figure 3, this time with the true class labels supplied
immediately after classification. For the purposes of the illustration
we chose the nearest mean classifier (NMC), in spite of the fact that
it is not optimal for the problem. The same values ofM were used
as in the detection from unlabelled data. NMC was built on the first
windowW1 and updated with the new observations without any for-
getting. The guessed label of observationi was obtained from the
current version of NMC. The true label was received and the error
was recorded (0 for no error, 1 for error). NMC was retrained using
observationi and the true label. The running error was the error of
NMC built on all the data from the start up to pointi. The window
of sizeM containing the error records of the pastM observations
was used to estimate the current error and compare it with the mean
error hitherto. The 3 sigma threshold was used again. The error rate
does not increase dramatically after observation 400 where the old

and the new distributions are swapped. Hence the change detection
patterns were erratic, often not signalling a change throughout the
whole run. The ensemble was constructed by pooling the detectors
for the 5 different values ofM . The ensemble signals a change at
observationi if at least one of the detectors signals a change. Figure
6 shows the individual detector scores and the ensemble score for the
labelled data case. The same two axes are used: false positive rate
and the detection time (Note that Detection time =400 + ∆true +).
The numbers in brackets show in how many out of the 100 runs the
respective detector has missed the change altogether. The ensemble
detector again has the smallest time to detection. The two individ-
ual detectors with better false detection rate have a lerger number of
missed detections as well as higher time to detection.
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Figure 6. Single and ensemble detectors:labelleddata. The numbers in
brackets show in how many out of the 100 runs the respective detector has

missed the change altogether.

The control chart detection methods fall in the category of detec-
tors from labelled data. Ensembles of control charts may be an inter-
esting research direction. Based on the currently available theoretical
fundament, desirable ensemble properties may turn out to be theoret-
ically provable.

5 CONCLUSIONS

The true potential of ensembles for change detection lies in the ability
of different detection modes and information sources to sense differ-
ent types and magnitudes of change. The purpose of this study was
not to offer answers but rather to open new questions. The idea of
constructing an ensemble for change detection was suggested and
illustrated using both labelled and unlabelled data. The detection en-
sembles could be homogeneous (using the same detection methods
with different parameters) as well as heterogeneous (detection based
on labelled and unlabelled data, feature relevance, and more). The
detector may be used in conjunction with the classifier. For example,
the detector may propose how long after the detection the old clas-
sifier can be more useful than an undertrained new classifier. With
gradual changes, the detector can be used to relate the magnitude of
the change with the size of a variable training window for the classi-
fier. Various problem-specific heuristics can be used to combine the
individual detectors. Control chart methods come with a solid body
of theoretical results that may be used in designing the ensemble de-
tectors.



One possibility which was not discussed here is to couple detec-
tors with the members of the classifier ensemble responsible for the
labelling of the streaming data. Thus various changes can be handled
by different ensemble members, and a single overall change need not
be explicitly signalled.
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