
June 8, 2003 17:59 WorldScientific/ws-b8-5x6-0 kuncheva

Chapter 15

Combining classifiers: Soft computing

solutions

Ludmila I. Kuncheva

School of Informatics, University of Wales, Bangor

Bangor, Gwynedd, LL57 1UT, United Kingdom

e-mail: l.i.kuncheva@bangor.ac.uk,

http://www.bangor.ac.uk/simmas00a/

Abstract∗

Classifier combination is now an established pattern recognition

subdiscipline. Despite the strong aspiration for theoretical studies,

classifier combination relies mainly on heuristic and empirical so-

lutions. Assuming that “soft computing” encompasses neural net-

works, evolutionary computation, and fuzzy sets, we explain how

each of the three components has been used in classifier combina-

tion.

15.1 Introduction

Let D = {D1, D2, . . . , DL} be a set of classifiers (we shall also call D a team or

ensemble), and let Ω = {ω1, . . . , ωc} be a set of class labels. Each classifier gets

as its input a feature vector x = [x1, . . . , xn]T , x ∈ <n and assigns it to a class

label from Ω, i.e., Di : <n → Ω. Alternatively, we may define the classifier

output to be a c-dimensional vector with supports to the classes, i.e.,

Di(x) = [di,1(x), . . . , di,c(x)]T . (15.1)

∗

Published in: S.K.Pal and A. Pal (Eds), Pattern Recognition: From Classical to Modern

Approaches, World Scientific, 2001, 427–451.

427

June 8, 2003 17:59 WorldScientific/ws-b8-5x6-0 kuncheva

428 Combining classifiers: Soft computing solutions

Without loss of generality we can restrict di,j(x) within the interval [0, 1],

i = 1, . . . , L, j = 1, . . . , c, and call the classifier outputs “soft labels” (see [7]).

Thus, di,j(x) is the degree of “support” given by classifier Di to the hypothesis

that x comes from class ωj (most often di,j(x) is an estimate of the posterior

probability P (ωi|x)). Combining classifiers means to find a class label for x

based on the L classifier outputs D1(x), . . . , DL(x). Again, instead of a single

label, we can find a vector with c final degrees of support for the classes as a

soft label for x, denoted

D(x) = [µ1(x), . . . , µc(x)]T . (15.2)

If a crisp class label of x is needed, we can use the maximum membership rule:

Assign x to class ωs iff,

µs(x) ≥ µt(x), ∀t = 1, . . . , c. (15.3)

Ties are resolved arbitrarily.

We assume that a labeled data set Z is available, Z = {z1, . . . , zN}, zj ∈ <n,

which is used to design the classifier combination system: both the individual

classifiers and the combiner.

Classifier combination aims at a higher accuracy than that of a single mem-

ber of the team D. In the past few years, a lot of work has been done towards

developing a rigorous theoretical background of classifier combination. Yet,

the useful heuristics are a step ahead the theory, and collective effort is being

devoted to understanding and explaining why these heuristics work so well.

Classifier combination is called different names in the literature as shown in

Table 15.1. It is therefore important to recognize the pressing need for tidying

up the shelf by grouping and arranging the existing solutions in a taxonomy.

This chapter surveys soft computing methods in classifier combination.

Whatever reservations I might have to the term, we shall assume that soft com-

puting covers neural and evolutionary computation, and fuzzy sets. Section 2

explains classifier combination. Section 3 identifies the place of the three com-

ponents of soft computing within classifier combination tools and techniques,

and Section 4 offers a concluding remark.

June 8, 2003 17:59 WorldScientific/ws-b8-5x6-0 kuncheva

Classifier combination 429

Table 15.1 Classifier combination “aliases” in the literature

1 combination of multiple classifiers [54; 61; 72; 73; 42];

2 classifier fusion [16; 25; 28; 41; 9];

3 mixture of experts [39; 38; 40; 58];

4 committees of neural networks [8; 21];

5 consensus aggregation [6; 57; 5];

6 voting pool of classifiers [3];

7 dynamic classifier selection [72];

8 composite classifier systems [18];

9 classifier ensembles [21; 22; 62];

10 bagging, boosting, arcing, wagging [62];

11 modular systems [62];

12 collective recognition [60; 2]

13 stacked generalization [71];

14 divide-and-conquer classifiers [13];

15 pandemonium system of reflective agents [64];

16 change-glasses approach to classifier selection [45], etc.

15.2 Classifier combination

15.2.1 Four approaches

Table 15.2 shows four approaches to designing a classifier combination system.

Approach A. We assume that D1, . . . , DL are given (trained in advance),

and the problem is to pick a combination scheme and train it if necessary.

Approach B. Any pattern classifier can be used as a team member. Thus,

D can be homogeneous, i.e., formed using identical classifier models (e.g., Multi-

Layer Perceptron (MLP) neural networks) with different structure, parameters,

initialization protocols, etc. Alternatively, a heterogeneous D can be designed,

as for example in [72].

Approach C. Sometimes it is suitable to build each Di on an individual

subset of features (subspace of <n). This is useful when n if large (e.g., a few

hundred), and groups of features come from different sources or different data

pre-processing. Examples can be found in image and speaker recognition, etc.
[12; 43].

June 8, 2003 17:59 WorldScientific/ws-b8-5x6-0 kuncheva

430 Combining classifiers: Soft computing solutions

Approach D. Many authors are of the opinion that training set alteration

is the most powerful of the four approaches as it can lead to a team of diverse

classifiers [19; 66] whereas none of the other three approaches is suited for that.

Diversity among the classifiers in D means that the individual classifiers Di’s

misclassify different objects, having at the same time high individual accuracy.

This property alone can guarantee a good potential of the team even with the

simplest combination schemes. Exploiting this idea, several methods have been

proposed to select training subsets of the data set Z.

Table 15.2 Four approaches to designing a classifier combination system

x

Classifier LClassifier 1 ...Classifier i ...

Combiner

x

Classifier LClassifier 1 ...Classifier i ...

Combiner

A. Different combination schemes. B. Different classifier models.

x

Classifier LClassifier 1 ...Classifier i ...

Combiner

31Z Z Z2

C. Different feature subsets. D. Different training sets.

(1) Partition the data randomly into L parts and use a different part to

train each classifier.

(2) Boosting: Start with a classifier D1 on the whole of Z, filter out “diffi-

cult” objects and build D2 on them. Continue with the cascade until

DL is built (e.g.,[21]).

(3) Bagging: design bootstrap samples by resampling from Z with a uni-

form distribution and train one Di on each sample [10].

(4) Adaptive resampling: design bootstrap samples by resampling from Z

with a non-uniform distribution. Update the distribution with respect

June 8, 2003 17:59 WorldScientific/ws-b8-5x6-0 kuncheva

Classifier combination 431

to previous successes. Thus, more “difficult” data points will appear

more often in the subsequent training samples [4; 10; 19].

Any integration of the four approaches can be applied too. For now, soft

computing methods have been used in the context of approaches A,B and C.

15.2.2 Combination paradigms

There are generally two types of combinations: classifier selection and clas-

sifier fusion as named in [72]. The presumption in classifier selection is that

each classifier is “an expert” in some local area of the feature space. When a

feature vector x ∈ <n is submitted for classification, the classifier responsible

for the vicinity of x is given the highest credit to label x. We can nominate

exactly one classifier to make the decision, as in [60], or more than one “local

expert”, as in [1; 39; 67]. Classifier fusion assumes that all classifiers are trained

over the whole feature space, and are thereby considered as competitive rather

than complementary [57; 73].†

Fusion and selection are often merged. Instead of nominating one “expert”

we can nominate a small group of them. We can then take their judgements

and weight them by the level of expertise they have on x. Thus, the classifier

with the highest individual accuracy could be made the “leading expert” in

the team. When many classifiers become involved, the scheme is shifted from

classifier selection towards classifier fusion. This suggests that we rarely use

the two strategies in their pure forms.

Two major types of multiple classifier outputs are

(1) A set of class labels (votes), s1, . . . sL,

Di(x) = si ∈ Ω. (15.4)

For example, let c = 3, L = 5. The output can be

ω3 ω2 ω2 ω1 ω2 .

(2) A matrix of soft labels, called the decision profile [52]

†In [62], classifier fusion is named ensemble approach and classifier selection is named modular

approach.

June 8, 2003 17:59 WorldScientific/ws-b8-5x6-0 kuncheva

432 Combining classifiers: Soft computing solutions

DP (x) =









d1,1(x) ... d1,j(x) ... d1,c(x)

...

di,1(x) ... di,j(x) ... di,c(x)

...

dL,1(x) ... dL,j(x) ... dL,c(x)









. (15.5)

?

Output of classifier Di(x)

A
AAK

Support from classifiers D1 . . . DL for class ωj

Some fusion methods calculate the support for class ωj using only the jth

column of DP (x), regardless of what the support for the other classes is. Fusion

methods that use the DP class-by-class will be called class-conscious (CC)
[52]. We refer to the alternative group as class-indifferent (CI) methods, i.e.,

methods that use the whole of the decision profile in calculating each µi(x).

Notice the difference between the two groups. The former use the context of the

DP , i.e., recognizing that a column corresponds to a class, but disregard part

of the information. Class-indifferent methods use the whole DP but disregard

its context.

The diagram in Figure 15.1 depicts one possible grouping of classifier combi-

nation methods. The methods are placed in boxes at the leaves of the tree with

a few corresponding references. Some of the methods will be described later

while others are mentioned only for completeness. Among the class-conscious

methods, the weighted linear combination is one of the most popular aggrega-

tion formulas. The support for class ωi is calculated as the weighted average of

the supports given by the L classifiers. Based on how the coefficients are ob-

tained, we can distinguish between fixed-coefficient models and data-dependent

coefficient models where the coefficients are recalculated for every input x. It is

interesting to observe that data-dependent coefficients can be so designed that

the combination paradigm (starting off as a classifier fusion model) turns into

a classifier selection model. For example, a linear classifier fusion model with

data-dependent coefficient so that only one coefficient is 1 and the remaining

coefficients are 0s is in fact selecting the classifier corresponding to the 1, to

label x.

June 8, 2003 17:59 WorldScientific/ws-b8-5x6-0 kuncheva

Soft computing in classifier combination 433

Type of output

��������9

XXXXXXXXz

Class labels Decision profile

Plurality [30]

Majority [3; 55]

Unanimity

Naive Bayes [73]

BKS [35]

Wernecke [69; 70]

C
CCW

Class-indifferent

Brute force [51]

Stacked
generalization [71]

Dempster-Shafer [61]

Decision templates [52]

��������)
Class-conscious

Linear models Nonlinear models Order statistics

?

@
@

@
@

@
@

@@R

�
�

�
�

�
�

��	

Minimum

Maximum

Median

OWA [48]

Product

Geometric mean

Fuzzy integral
[5; 16; 17; 25; 68; 67]

Neural networks [34; 25]

?

A
A
A
A
A
A
AAU

Fixed weights

[6; 14; 15]
[33; 31; 32]
[54; 65; 67]

Data-dependent weights

@
@

@
@

@R

�
�

�
�

�	
Soft weights Crisp weights

Mixture of experts
[39; 38; 40; 58]

Classifier selection
[60; 50; 72], etc.

Fig. 15.1 One possible grouping of classifier combination methods

15.3 Soft computing in classifier combination

15.3.1 Neural networks

Neural networks (NN) are the most popular choice for the individual classi-

fiers in the team (approach B). Most of the studies on combining classifiers

June 8, 2003 17:59 WorldScientific/ws-b8-5x6-0 kuncheva

434 Combining classifiers: Soft computing solutions

appears in the neural network literature, e.g., the journals IEEE Transactions

on Neural Networks, Neural Networks, Neural Computation, Communication

Science, etc. This choice, initially made by intuition, has now been justified

theoretically. The classification error can be decomposed by algebraic manip-

ulation into two terms: bias and variance with respect to individual classifier

outputs (see for reference [62]). Ideally, both terms should be small which is

hardly possible for a single classifier model. Simple classifiers such as linear

discriminant analysis have low variance and high bias. This means that these

models are not very sensitive to small changes in the training data set (the

calculation of the discriminant functions will not be much affected by small

alterations in the training data) but at the same time are unable to reach low

error rates. Conversely, neural networks have been shown to be ultimately

versatile, i.e., they can approximate any classification boundary with arbitrary

precision. The price to pay for the low error rate is that neural classifiers may

overtrain. Thus, neural classifiers have low bias (any classification boundary

can be modeled) and high variance (small changes in the data set might lead

to a very different neural network). Assume that we combine classifiers of the

same bias and the same variance V by averaging the classifier outputs, e.g.,

µi(x) =
1

L

∑

k=1,L

dk,i(x).

Then the combination bias will be the same as that of the individual classifiers

but the variance can be smaller than V , thereby reducing the error of the

combination.

If D consists of identical classifiers, then no improvement will be gained by

the combination as the variance of the team estimate will be V . If D consists

of statistically independent classifiers, then the combination variance is V
L

and

the error is subsequently reduced. Even better team can be constituted if the

classifiers are negatively dependent, i.e., they misclassify different objects. To

be able to construct diverse classifiers of high accuracy, we need a versatile

model. Neural networks are therefore an ideal choice for individual members of

the team. The high variance should not be a concern as there are combination

mechanisms that will reduce it.

Typically, MLP and Radial Basis Function (RBF) networks are used but

variants thereof are also considered [59]. Training of the individual neural

classifiers may preceed the design of the combination or be carried out with

regard to the team performance. Some authors consider training an excessive

June 8, 2003 17:59 WorldScientific/ws-b8-5x6-0 kuncheva

Soft computing in classifier combination 435

amount of NNs and subsequently selecting the members of D [23; 24; 26]. If

approach D is adopted, neural classifiers are trained on the subsequently

generated training sets. Drucker [20] compares experimentally neural networks

and classification trees (another classifier model found to be very suitable for

classifier ensembles) and finds NNs to be superior.

Neural networks can be used as a class-indifferent (brute force or stacked

generalization [71]) model and also as a class-conscious model for classifier

combination (approach A) [34].

In summary, NNs are undoubtedly the most important intercept between

soft computing and classifier combination.

15.3.2 Evolutionary computation

Evolutionary computation and mainly genetic algorithms (GAs) have been used

at different stages of the design of classifier combination systems.

Approach A. Tuning the combiner. Genetic algorithms have been used to

find a set of weights for combination through weighted sum [15; 54]. Lam and

Suen [54] discuss GAs for finding L weights, one per classifier. Binary encoding

of the weights is used with 10-bit representation of each weight. Similarly,

Cho [15] uses a GA to find a matrix of L × c weights, one per classifier-class

pair. Thus, µi(x), i = 1, . . . , c are obtained by c different linear combinations.

Each weight is encoded by 8 bits. There are many publications on finding

combination weights, both heuristic and more rigorous, e.g., [6; 14; 33; 31; 32;

65; 67]. Whether GAs lead to better results is unknown.

Approach B. Tuning the classifier models. All studies in this category

use neural networks as individual members of the team. The neural networks

are evolved by GAs, with respect to both weights and structure. A standard

GA, although evolving a population of networks, will converge to a single so-

lution. That is, the last generation is likely to consist of exact clones or very

close relatives, meaning almost identical Dis. Despite highly accurate, these

classifiers will hardly form a successful team because nothing can be gained

from combining exact replicas of the same classifier. Therefore, a mechanism

preserving diversity should be incorporated into the GA. One such option is

niching.

Benediktsson et al. [5] apply a real-valued GA to train the network weights

and a binary-coded GA for pruning weights off a trained network. The networks

are evolved with respect to their individual classification performance, and the

diversity of the population is enforced by special genetic operators: extinction

June 8, 2003 17:59 WorldScientific/ws-b8-5x6-0 kuncheva

436 Combining classifiers: Soft computing solutions

and immigration. Friedrich [23; 24] evolves a population of neural networks

is evolved and then selects a subset whose members are maximally negatively

correlated. While in [5; 23; 24] a standard MLP is considered, Opitz and Shavlik
[59] propose an evolutionary algorithm called ADDEMUP for knowledge-based

neural networks (KBNN). Each such network can be translated into sets of

if-then rules.‡ The GA evolves a population of KBNNs to be the team D. To

maintain diversity, the fitness function of chromosome Si (a single KBNN) is

Fitness(Si) = Accuracy(Si) + λDiversity(Si). (15.6)

The measure of diversity [44] is generally an estimate of the deviation of the

output of the ith KBNN from the average of the team. The more diverse the

ensemble, the higher the gain in classification accuracy. The parameter λ > 0

controls the balance between the two criteria. As a rule of thumb, the authors

of [59] recommend to set λ to 0.1 and vary it by about 10 % depending on

the current accuracy-diversity dynamic. If the accuracy of the team is not

decreasing over a number of generations but diversity decreases, then diversity

is underemphasized and so, increase λ. If the accuracy starts decreasing and

diversity is not decreasing, then diversity is overemphasized and so, decrease

λ.

A problem with this group of methods is that the chromosomes correspond

to the individual Di’s, and the fitness is not directly related to the overall

classification accuracy of the team. It is possible to encode D as a single

chromosome and evolve a population of teams. The search space, however,

might become too large and the GA will demand a lot of computing resources

and expert effort for tuning.

Approach C. Selecting feature subsets. One of the main use of GAs in

pattern recognition has been for selection of a subset of features. The aim is to

have a space of dimensionality t < n, so that the classifier on <t is no worse than

the classifier on <n (using all features). This problem is notoriously difficult

and its optimal solution is guaranteed only if all feature subsets are checked

(exhaustive enumeration). GAs are a natural option for feature selection [11;

63]. A feature selection GA for multiple classifier systems is proposed in [46].

A population of classifiers is evolved aiming at high individual accuracy. The

binary chromosome Si encodes a feature subset, and the respective classifier

Di is built using only this subset. The team D is then selected as best group of

L from the population. Again, the group aspiration criterion is not taken into

‡No fuzzy systems connotation has been given by the authors.

June 8, 2003 17:59 WorldScientific/ws-b8-5x6-0 kuncheva

Soft computing in classifier combination 437

account when the individual chromosomes (classifiers) are evaluated by their

fitness. The diversity preserving adjustment in this model is that the best

team is identified at each generation, and the chromosomes in it are retained

for the next generation, regardless of their individual fitness. To overcome

the “individualistic” approach, the whole team D is evolved in [53]. Two GA

versions are proposed: Version 1, where Dis use disjoint subsets of features

and Version 2, where the subsets of features may overlap. In Version 1, the

chromosome has n genes, one for each feature. The values of each gene are in

the set {0, 1, . . . , L}. A value i ∈ {1, . . . , L} at position j means that (only)

Di uses feature xj , and a value 0 means that feature xj is not used by any

classifier in this team.

Example 15.1 Let n = 10, and L = 3. A possible chromosome is

2 2 1 2 2 3 2 3 0 1 . This chromosome represents a team D where

D1 uses a 2-dimensional feature vector x = [x3, x10]
T , D2 uses a 5-dimensional

feature vector x = [x1, x2, x4, x5, x7]
T , D3 uses a 2-dimensional feature vector

x = [x6, x8]
T , and feature x9 is not used.

Version 2 GA allows for 2L values of each gene, accounting for all possible

combinations of Di (or none) that might share feature xj .

There is an apparent analogy between the problem of evolving one mem-

ber of the team and the whole team on the one hand, and the Michigan and

Pittsburgh approaches for evolving fuzzy if-then systems on the other hand
[51]. Within the Michigan approach, the chromosome represents one if-then

rule, whereas within the Pittsburgh approach, the chromosome represents the

whole fuzzy if-then system. The preferences in the literature are not clear-cut,

so both approaches are used.

Approach D. Selecting training sets. The reason why this most promising

approach has not been explored so far could be that if the data set Z is large, the

same will be the chromosome, and the GA will be unacceptably slow. Knowing

the advantages of approach D, subset selection by GAs seems worth trying (see
[47; 49]).

15.3.3 Fuzzy sets

Fuzzy set theory has been used predominantly at the combination stage (ap-

proach A). Detailed below are several fuzzy combination schemes (cf. [51]).

June 8, 2003 17:59 WorldScientific/ws-b8-5x6-0 kuncheva

438 Combining classifiers: Soft computing solutions

15.3.3.1 Simple fuzzy aggregation connectives

These combination designs belong to the class-conscious group because each

µi(x) is calculated using only the ith column of the decision profile DP (x).

We use the L-place operators minimum, maximum, average and product as the

function F in

µi(x) = F (d1,i(x), . . . , dL,i(x)) , i = 1, . . . , c. (15.7)

Example 15.2 Let c = 3 and L = 5. Assume that for a certain x,

DP (x) =









0.1 0.5 0.4

0.0 0.0 1.0

0.4 0.3 0.4

0.2 0.7 0.1

0.1 0.8 0.2









.

Applying each of the operators columnwise, we obtain as the final soft class

labels

Minimum = [0.0, 0.0, 0.1]T ;

Maximum = [0.4, 0.8, 1.0]T ;

Average = [0.16, 0.46, 0.42]T ;

Product = [0.0, 0.0, 0.0032]T .

If hardened, minimum, maximum, and product will label x in class ω3, whereas

the average will put x in class ω2.

15.3.3.2 More sophisticated aggregation connectives

Many such aggregation operations are available in the fuzzy set literature [9].

Ordered Weighted Averaging (OWA) operators can also be applied as F [48].

The OWA coefficients are not associated with a particular classifier Di but

with the places in the ordered outputs. The operation of OWA combination is

shown in Figure 15.2

OWA prevents crediting one particular “expert” with the highest compe-

tence across <n, as it would be the case if we assigned fixed weights to the

classifiers. If the favourite expert (classifier) has received the credit because

of overfitting the training data, then by praising it, we can face poor general-

ization. Thus, classifier fusion by OWA seems more robust than the weighted

average, where the coefficients are derived on the basis of classifier performance.

It is worth noticing that the fuzzy integral for classifier fusion takes this idea

June 8, 2003 17:59 WorldScientific/ws-b8-5x6-0 kuncheva

Soft computing in classifier combination 439

OWA operators for combining classifiers,,

(1) Pick L OWA coefficients such that

b = [b1, . . . , bL]T ,

L∑

i=1

bi = 1.

(2) For k = 1, . . . , c,

(a) Sort di,k(x), i = 1, . . . , L in descending order, so that

a1 = max
i

di,k(x), and aL = min
i

di,k(x).

(b) Calculate the support for class ωk

µk(x) =

L∑

i=1

biai.

Fig. 15.2 OWA operators for combining classifiers

further so that OWA aggregation is a special case of it. OWA can model various

operations as shown in Table 15.3.

We can either pick the set of OWA coefficients or calculate them from Z by

minimizing the classification error of D.

Verikas et al. [67] consider aggregation by Zimmermann and Zysno’s com-

pensatory operator

µi(x) =

(
L∏

k=1

[dk,i(x)]wk

)1−γ (

1−
L∏

k=1

[1− dk,i(x)]wk

)γ

, (15.8)

where wk , k = 1, . . . , L are coefficients of global “competence” (across the whole

<n),
∑L

k=1
wk = L, and γ ∈ [0, 1] is the compensation parameter. Verikas et

al. [67] propose also aggregation by BADD defuzzification§

µi(x) =

∑L
k=1

dk,i(x)[wk(x)]δ
∑L

k=1
[wk(x)]δ

, i = 1, . . . , c, (15.9)

§although used in a slightly different context

June 8, 2003 17:59 WorldScientific/ws-b8-5x6-0 kuncheva

440 Combining classifiers: Soft computing solutions

Table 15.3 Special cases of OWA operators

Minimum [0, 0, . . . , 1]T ,

Maximum [1, 0, . . . , 0]T ,

Median [0, . . . 0
︸ ︷︷ ︸

L−1

2

, 1, 0, . . . 0
︸ ︷︷ ︸

L−1

2

]T , for odd L,

[0, . . . 0
︸ ︷︷ ︸

L−2

2

, 1

2
, 1

2
, 0, . . . 0
︸ ︷︷ ︸

L−2

2

]T , for even L,

Average [1

L
, . . . , 1

L
]T ,

Competition jury [0, 1

L−2
, . . . , 1

L−2
, 0]T .

where δ is a parameter, and wk(x) are data-dependent weights calculated to

express the “expertise” of classifier Dk for the input x.

15.3.3.3 Fuzzy integral

Fuzzy integral can also be used as an aggregation connective [27; 29] and has

been applied to classifier combination [5; 16; 17; 25; 68; 67].

We use a fuzzy measure to take into account the importance of any subset

of classifiers from D with respect to a given ωi. Let P(D) be the power set of

D. A fuzzy measure on D is the set function

g : P(D) → [0, 1], (15.10)

such that

(1) g(∅) = 0, g(D) = 1;

(2) For any A and B, subsets of D, A ⊂ B ⇒ g(A) ≤ g(B).

g is called a λ-fuzzy measure if for any A and B, subsets of D, such that

A ∩ B = ∅,

g(A ∪ B) = g(A) + g(B) + λg(A)g(B), λ ∈ (−1,∞). (15.11)

Two basic types of fuzzy integrals have been proposed: Sugeno type and

Choquet type. Let H be a fuzzy set on D. The Sugeno fuzzy integral with

respect to a fuzzy measure g is obtained by

June 8, 2003 17:59 WorldScientific/ws-b8-5x6-0 kuncheva

Soft computing in classifier combination 441

AFI
g = max

α
{min(α, g(Hα))}, (15.12)

where Hα is the α-cut of H .

Example 15.3 Let L = 3, and let the fuzzy measure g be defined as follows

Subset D1 D2 D3 D1, D2 D1, D3 D2, D3 D1, D2, D3

g 0.3 0.1 0.4 0.4 0.5 0.8 1

Let H = [0.1, 0.7, 0.5]T be a fuzzy set on D accounting for the support for

class ωi by D1, D2, and D3, respectively (the ith row of DP (x)). The α-cuts

of H are

α = 0, H0 = {D1, D2, D3};

α = 0.1, H0.1 = {D1, D2, D3};

α = 0.5, H0.5 = {D2, D3};

α = 0.7, H0.7 = {D2};

α = 1, H0 = ∅.

Then

µi(x) = AFI
g

= max{min(0, 1), min(0.1, 1), min(0.5, 0.8),

min(0.7, 0.1), min(1, 0)} (15.13)

= max{0, 0.1, 0.5, 0.1, 0}

= 0.5.

The fuzzy measure g can be calculated from a set of L values gj , called fuzzy

densities, representing the individual importance of D1, . . . , DL, respectively.

We can find a λ-fuzzy measure which is consistent with these densities. The

value of λ is obtained as the unique real root greater than −1 of the polynomial

λ + 1 =

L∏

j=1

(1 + λgj), λ 6= 0. (15.14)

The operation of fuzzy integral as a classifier combiner is shown in Figure 15.3.

The support for ωi, µi(x), can be thought of as a “compromise” between the

competence (represented by the fuzzy measure g) and the evidence (represented

by the i-h row of the decision profile DP (x). Notice that the fuzzy measure

June 8, 2003 17:59 WorldScientific/ws-b8-5x6-0 kuncheva

442 Combining classifiers: Soft computing solutions

Fuzzy integral for classifier fusion

(1) Fix the L fuzzy densities g1, . . . , gL, e.g., by setting gj to the

estimated probability of correct classification of Dj .

(2) Calculate λ > −1 from (15.14).

(3) For a given x sort the kth column of DP (x) to obtain [di1 ,k(x),

di2,k(x), . . . , diL,k(x)]T , di1,k(x) being the highest degree of sup-

port, and diL,k(x), the lowest.

(4) Sort the fuzzy densities correspondingly, i.e., gi1 , . . . , giL and set

g(1) = gi1 .

(5) For t = 2 to L, calculate recursively

g(t) = git + g(t− 1) + λgitg(t− 1).

(6) Calculate the final degree of support for class ωk by

µk(x) =
L

max
t=1

{min{dit,k(x), g(t)}} .

Fig. 15.3 Fuzzy integral for classifier fusion

vector [g(1), . . . , g(L)]T might be different for each class, and is also specific for

the current x. Two fuzzy measure vectors will be the same only if the ordering

of the classifier support is the same. The algorithm in Figure 15.3 calculates a

Sugeno fuzzy integral. For the Choquet fuzzy integral with the same λ-fuzzy

measure, the last formula should be replaced by

µk(x) = di1,k(x) +

L∑

j=2

(
dij−1 ,k(x) − dij ,k(x)

)
g(j − 1).

15.3.3.4 Decision templates

The idea of the decision templates model is to “remember” the most typical

decision profile for each class, called the decision template, DTi, for that class,

and then compare it with the current decision profile DP (x). The closest match

will label x. Figure 15.4 describes the training and Figure 15.5, the operation

of the decision templates model. The similarity between DTi, i = 1, . . . , c on

the one hand, and DP (x) on the other hand, is calculated through Euclidean

distance between the two.

June 8, 2003 17:59 WorldScientific/ws-b8-5x6-0 kuncheva

Soft computing in classifier combination 443

Decision templates (training)

(1) For i = 1, . . . , c, calculate the mean of the decision profiles DP (zj)

of all members of ωi from the data set Z. Call the mean a decision

template DTi

DTi =
1

Ni

∑

zj∈ωi

zj∈Z

DP (zj), (15.15)

where Ni is the number of elements of Z from ωi.

(2) Return DT1, . . . , DTc.

Fig. 15.4 Training of the Decision templates method

Decision templates (operation)

(1) Given the input x ∈ <n, construct DP (x) as in (15.5).

(2) Calculate the squared Euclidean distance between DP (x) and

each DTi, i = 1, . . . , c

dE(DP (x), DTi) =

c∑

j=1

L∑

k=1

(dk,j(x) − dti(k, j))2, (15.16)

where dti(k, j) is the k, j-th entry in decision template DTi (an

L× c matrix).

(3) Calculate the components of the soft label of x by

µi(x) = 1−
1

L · c
dE(DP (x), DTi). (15.17)

Fig. 15.5 Operation of the Decision templates method

Example 15.4 Let c = 3 and L = 2, and

DT1 =





0.6 0.4

0.8 0.2

0.5 0.5



 and DT2 =





0.3 0.7

0.4 0.6

0.1 0.9



 . (15.18)

June 8, 2003 17:59 WorldScientific/ws-b8-5x6-0 kuncheva

444 Combining classifiers: Soft computing solutions

Assume that for an input x, the following decision profile has been obtained

DP (x) =





0.3 0.7

0.6 0.4

0.5 0.5



 . (15.19)

Then the soft label of x is

µ1(x) = 0.96, µ2(x) = 0.93. (15.20)

As both DP (x) and DTi are fuzzy sets on D×Ω, any measure of similarity

between fuzzy sets can be used.

Ishibuchi et al. [36; 37] propose voting schemes over a set of fuzzy if-

then rules or systems of fuzzy if-then rules. Lu and Yamaoka [56] apply fuzzy

inference to design the combiner.

Fuzzy set theory offers a great choice of combination ideas but these have not

been explored in conjunction with approach D. Many authors argue that the

combination scheme is not as relevant for the final accuracy as is the diversity of

the classifiers. Knowing that fuzzy combinations are capable of improving the

accuracy beyond that of the majority vote or the averaging model, integration

of fuzzy combination with approach D seems very promising.

15.4 Conclusions

This chapter explains classifier combination and some soft computing para-

digms within it. The three components attributed to the term “soft comput-

ing”: neural networks, evolutionary computing and fuzzy sets are considered

separately. The purpose was to explain the techniques and methods used, not

to advocate a particular example. Brief comments on each soft computing com-

ponent are offered in the respective subsections. It goes without saying that

all soft computing methods cited in this study have been compared experimen-

tally against some rival methods and have been found to be better. However,

since there is no accepted standard or “ultimate test”, the superiority of some

techniques over others cannot be empirically proven. This is the beauty and

the curse of the heuristic methods such as these explained here, and the final

choice is left to the experience and the intuition of the designer. Sorting and

grouping the methods, as done here, might help with the choice, and so might

the somewhat contradictory guideline: keep it simple and accurate.

June 8, 2003 17:59 WorldScientific/ws-b8-5x6-0 kuncheva

Conclusions 445

Bibliography

[1] E. Alpaydin and M. I. Jordan. Local linear perceptrons for classification. IEEE
Transactions on Neural Networks, 7(3):788–792, 1996.

[2] Y. L. Barabash. Collective Statistical Decisions in Recognition. Radio i Sviaz’,
Moscow, 1983. (In Russian).

[3] R. Battiti and A.M. Colla. Democracy in neural nets: Voting schemes for classi-
fication. Neural Networks, 7:691–707, 1994.

[4] E. Bauer and R. Kohavi. An empirical comparison of voting classification algo-
rithms: Bagging, boosting, and variants. Machine Learning, 36:105–142, 1999.

[5] J.A. Benediktsson, J.R. Sveinsson, J. I. Ingimundarson, H. Sigurdsson, and O.K.
Ersoy. Multistage classifiers optimized by neural networks and genetic algo-
rithms. Nonlinear Analysis, theory, Methods & Applications, 30(3):1323–1334,
1997.

[6] J.A. Benediktsson and P.H. Swain. Consensus theoretic classification methods.
IEEE Transactions on Systems, Man, and Cybernetics, 22:688–704, 1992.

[7] J.C. Bezdek, J.M Keller, R. Krishnapuram, and N.R. Pal. Fuzzy Models and
Algorithms for Pattern Recognition and Image Processing. Kluwer Academic
Publishers, 1999.

[8] C.M. Bishop. Neural Networks for Pattern Recognition. Clarendon Press, Oxford,
1995.

[9] I. Bloch. Information combination operators for data fusion: a comparative review
with classification. IEEE Transactions on Systems, Man, and Cybernetics -
Part A: Systems and Humans, 26:52–67, 1996.

[10] L. Breiman. Combining predictors. In A.J.C. Sharkey, editor, Combining Artifi-
cial Neural Nets, pages 31–50. Springer-Verlag, London, 1999.

[11] E.I. Chang and R.P. Lippmann. Using genetic algorithms to improve pattern
classification performance. volume 3 of Neural Information Processing Systems,
pages 797–803, San Mateo, CA, 1991. Morgan Kaufmann Publishers.

[12] K. Chen, L. Wang, and H. Chi. Methods of combining multiple classifiers with
different features and their applications to text-independent speaker identifica-
tion. International Journal on Pattern Recognition and Artificial Intelligence,
11(3):417–445, 1997.

[13] C.-C. Chiang and H.-C. Fu. A divide-and-conquer methodology for modular
supervised neural network design. In IEEE International Conference on Neural
Networks, pages 119–124, Orlando, Florida, 1994.

[14] C.C. Chibelushi, F. Deravi, and J.S.D. Mason. Adaptive classifier integration for
robust pattern recognition. IEEE Transactions on Systems, Man, and Cyber-
netics, Part B: Cybernetics, 29(6):902–907, 1999.

[15] S.-B. Cho. Pattern recognition with neural networks combined by genetic algo-
rithm. Fuzzy Sets and Systems, 103:339–347, 1999.

[16] S.-B. Cho and J.H. Kim. Combining multiple neural networks by fuzzy integral
and robust classification. IEEE Transactions on Systems, Man, and Cybernet-
ics, 25:380–384, 1995.

June 8, 2003 17:59 WorldScientific/ws-b8-5x6-0 kuncheva

446 Combining classifiers: Soft computing solutions

[17] S.B. Cho and J.H. Kim. Multiple network fusion using fuzzy logic. IEEE Trans-
actions on Neural Networks, 6:497–501, 1995.

[18] B.V. Dasarathy and B.V. Sheela. A composite classifier system design: concepts
and methodology. Proceedings of IEEE, 67:708–713, 1978.

[19] T.G. Dietterich. Ensemble methods in machine learning. In J. Kittler and F. Roli,
editors, Multiple Classifier Systems, volume 1857 of Lecture Notes in Computer
Science, pages 1–15, Cagliari, Italy, 2000. Springer.

[20] H. Drucker. Boosting using neural networks. In A.J.C. Sharkey, editor, Combining
Artificial Neural Nets, pages 51–78. Springer-Verlag, London, 1999.

[21] H. Drucker, C. Cortes, L.D. Jackel, Y. LeCun, and V. Vapnik. Boosting and other
ensemble methods. Neural Computation, 6:1289–1301, 1994.

[22] E. Filippi, M. Costa, and E. Pasero. Multy-layer perceptron ensembles for
increased performance and fault-tolerance in pattern recognition tasks. In
IEEE International Conference on Neural Networks, pages 2901–2906, Or-
lando, Florida, 1994.

[23] C.M. Friedrich. Ensembles of evolutionary created artificial neural networks. In
Proc. 5th Int. Workshop Fuzzy-Neuro Systems’98 (FNS’98), pages 250–256,
Munich, Germany, 1998.

[24] C.M. Friedrich. Ensembles of evolutionary created artificial neural networks and
nearest neighbour classifiers. In Proc. 3rd On-line Conference on Soft Comput-
ing in Engineering Design and Manufacturing (WSC3), pages 288–298, 1998.

[25] P.D. Gader, M.A. Mohamed, and J.M. Keller. Fusion of handwritten word clas-
sifiers. Pattern Recognition Letters, 17:577–584, 1996.

[26] G. Giacinto and F. Roli. Design of effective neural network ensembles for image
classification processes. Image Vision and Computing Journal, 19(9-10):699–
707, 2001.

[27] M. Grabisch. On equivalence classes of fuzzy connectives - the case of fuzzy
integrals. IEEE Transactions on Fuzzy Systems, 3(1):96–109, 1995.

[28] M. Grabisch and F. Dispot. A comparison of some for fuzzy classification on real
data. In 2nd International Conference on Fuzzy Logic and Neural Networks,
pages 659–662, Iizuka, Japan, 1992.

[29] M. Grabisch and M. Sugeno. Multi-attribute classification using fuzzy integral.
In IEEE International Conference on Fuzzy Systems, pages 47–54, San Diego,
California, 1992.

[30] L.K. Hansen and P. Salamon. Neural network ensembles. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 12(10):993–1001, 1990.

[31] S. Hashem. Optimal linear combinations of neural networks. Neural Networks,
10(4):599–614, 1997.

[32] S. Hashem. Treating harmful collinearity in neural network ensembles. In A.J.C.
Sharkey, editor, Combining Artificial Neural Nets, pages 101–125. Springer-
Verlag, London, 1999.

[33] S. Hashem, B. Schmeiser, and Y. Yih. Optimal linear combinations of neural
networks: an overview. In IEEE International Conference on Neural Networks,
pages 1507–1512, Orlando, Florida, 1994.

June 8, 2003 17:59 WorldScientific/ws-b8-5x6-0 kuncheva

Conclusions 447

[34] Y.S. Huang and C.Y. Suen. A method of combining multiple classifiers - a neural
network approach. In 12th International Conference on Pattern Recognition,
pages 473–475, Jerusalem, Israel, 1994.

[35] Y.S. Huang and C.Y. Suen. A method of combining multiple experts for the
recognition of unconstrained handwritten numerals. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 17:90–93, 1995.

[36] H. Ishibuchi, T. Morisawa, and T. Nakashima. Voting schemes for fuzzy rule-
based classification systems. In Proc. FUZZ/IEEE, 1996.

[37] H. Ishibuchi, T. Nakashima, and T. Morisawa. Voting in fuzzy rule-based systems
for pattern classification problems. Fuzzy Sets and Systems, 103:223–238, 1999.

[38] R.A. Jacobs. Methods for combining experts’ probability assessments. Neural
Computation, 7:867–888, 1995.

[39] R.A. Jacobs, M.I. Jordan, S.J. Nowlan, and G.E. Hinton. Adaptive mixtures of
local experts. Neural Computation, 3:79–87, 1991.

[40] M.I. Jordan and L. Xu. Convergence results for the EM approach to mixtures of
experts architectures. Neural Networks, 8:1409–1431, 1995.

[41] J.M. Keller, P. Gader, H. Tahani, J.-H. Chiang, and M. Mohamed. Advances in
fuzzy integration for pattern recognition. Fuzzy Sets and Systems, 65:273–283,
1994.

[42] J. Kittler, M. Hatef, R.P.W. Duin, and J. Matas. On combining classifiers. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20(3):226–239,
1998.

[43] J. Kittler, A. Hojjatoleslami, and T. Windeatt. Strategies for combining classifiers
employing shared and distinct representations. Pattern Recognition Letters,
18:1373–1377, 1997.

[44] A. Krogh and J. Vedelsby. Neural network ensembles, cross validation and active
learning. In G. Tesauro, D.S. Touretzky, and T.K. Leen, editors, Advances in
Neural Information Processing Systems, volume 7, pages 231–238. MIT Press,
Cambridge, MA, 1995.

[45] L.I. Kuncheva. Change-glasses approach in pattern recognition. Pattern Recog-
nition Letters, 14:619–623, 1993.

[46] L.I. Kuncheva. Genetic algorithm for feature selection for parallel classifiers.
Information Processing Letters, 46:163–168, 1993.

[47] L.I. Kuncheva. Editing for the k-nearest neighbors rule by a genetic algorithm.
Pattern Recognition Letters, 16:809–814, 1995.

[48] L.I. Kuncheva. An application of OWA operators to the aggregation of multiple
classification decisions. In R.R. Yager and J. Kacprzyk, editors, The Ordered
Weighted Averaging operators. Theory and Applications, pages 330–343. Kluwer
Academic Publishers, USA, 1997.

[49] L.I. Kuncheva. Fitness functions in editing k-nn reference set by genetic algo-
rithms. Pattern Recognition, 30:1041–1049, 1997.

[50] L.I. Kuncheva. Clustering-and-selection model for classifier combination. In
Proc. Knowledge-Based Intelligent Engineering Systems and Allied Technolo-
gies, pages 185–188, Brighton, UK, 2000.

June 8, 2003 17:59 WorldScientific/ws-b8-5x6-0 kuncheva

448 Combining classifiers: Soft computing solutions

[51] L.I. Kuncheva. Fuzzy Classifier Design. Studies in Fuzziness and Soft Computing.
Springer Verlag, Heidelberg, 2000.

[52] L.I. Kuncheva, J.C. Bezdek, and R.P.W. Duin. Decision templates for multiple
classifier fusion: an experimental comparison. Pattern Recognition, 34(2):299–
314, 2001.

[53] L.I Kuncheva and L.C. Jain. Designing classifier fusion systems by genetic algo-
rithms. IEEE Transactions on Evolutionary Computation, 4(4):327–336, 2000.

[54] L. Lam and C.Y. Suen. Optimal combination of pattern classifiers. Pattern
Recognition Letters, 16:945–954, 1995.

[55] L. Lam and C.Y. Suen. Application of majority voting to pattern recognition:
An analysis of its behavior and performance. IEEE Transactions on Systems,
Man, and Cybernetics, 27(5):553–568, 1997.

[56] Y. Lu and F. Yamaoka. Fuzzy integration of classification results. Pattern Recog-
nition, 30(11):1877–1891, 1997.

[57] K.-C. Ng and B. Abramson. Consensus diagnosis: A simulation study. IEEE
Transactions on Systems, Man, and Cybernetics, 22:916–928, 1992.

[58] S.J. Nowlan and G.E. Hinton. Evaluation of adaptive mixtures of competing
experts. In R.P. Lippmann, J.E. Moody, and D.S. Touretzky, editors, Advances
in Neural Information Processing Systems 3, pages 774–780, 1991.

[59] D. Opitz and J. Shavlik. A genetic algorithm approach for creating neural network
ensembles. In A.J.C. Sharkey, editor, Combining Artificial Neural Nets, pages
79–99. Springer-Verlag, London, 1999.

[60] L.A. Rastrigin and R.H. Erenstein. Method of Collective Recognition. Energoizdat,
Moscow, 1981. (In Russian).

[61] G. Rogova. Combining the results of several neural network classifiers. Neural
Networks, 7:777–781, 1994.

[62] A.J.C. Sharkey, editor. Combining Artificial Neural Nets. Ensemble and Modular
Multi-Net Systems. Springer-Verlag, London, 1999.

[63] W. Siedlecki and J. Sklansky. A note on genetic algorithms for large-scale feature
selection. Pattern Recognition Letters, 10:335–347, 1989.

[64] F. Smieja. The pandemonium system of reflective agents. IEEE Transactions on
Neural Networks, 7:97–106, 1996.

[65] V. Tresp and M. Taniguchi. Combining estimators using non-constant weighting
functions. In G. Tesauro, D.S. Touretzky, and T.K. Leen, editors, Advances in
Neural Information Processing Systems 7, Cambridge, MA, 1995. MIT Press.

[66] K. Tumer and J. Ghosh. Error correlation and error reduction in ensemble clas-
sifiers. Connection Science, 8(3/4):385–404, 1996.

[67] A. Verikas, A. Lipnickas, K. Malmqvist, M. Bacauskiene, and A. Gelzinis. Soft
combination of neural classifiers: A comparative study. Pattern Recognition
Letters, 20:429–444, 1999.

[68] D. Wang, J. M. Keller, C.A. Carson, K.K. McAdoo-Edwards, and C.W. Bailey.
Use of fuzzy-logic-inspired features to improve bacterial recognition through
classifier fusion. IEEE Transactions on Systems, Man, and Cybernetics,
28B(4):583–591, 1998.

June 8, 2003 17:59 WorldScientific/ws-b8-5x6-0 kuncheva

Conclusions 449

[69] K.-D. Wernecke. On classification strategies in medical diagnostics (with special
preference to mixed models). In H.H. Bock, editor, Classification and Related
Methods of Data Analysis, pages 299–306. Elsevier Science Publisher, 1988.

[70] K.-D. Wernecke. A coupling procedure for discrimination of mixed data. Biomet-
rics, 48:497–506, 1992.

[71] D.H. Wolpert. Stacked generalization. Neural Networks, 5(2):241–260, 1992.
[72] K. Woods, W.P. Kegelmeyer, and K. Bowyer. Combination of multiple classifiers

using local accuracy estimates. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 19:405–410, 1997.

[73] L. Xu, A. Krzyzak, and C.Y. Suen. Methods of combining multiple classifiers and
their application to handwriting recognition. IEEE Transactions on Systems,
Man, and Cybernetics, 22:418–435, 1992.

