
Pattern Recognition

LUDMILA I. KUNCHEVA AND CHRISTOPHER J. WHITAKER

Volume 3, pp. 1532–1535

in

Encyclopedia of Statistics in Behavioral Science

ISBN-13: 978-0-470-86080-9
ISBN-10: 0-470-86080-4

Editors

Brian S. Everitt & David C. Howell

 John Wiley & Sons, Ltd, Chichester, 2005

Pattern Recognition

Pattern recognition deals with classification problems
that we would like to delegate to a machine, for
example, scanning for abnormalities in smear test
samples, identifying a person by voice and a face
image for security purposes, detecting fraudulent
credit card transactions, and so on. Each object (test
sample, person, transaction) is described by a set of
p features and can be thought of as a point in some
p-dimensional feature space.

A classifier is a formula, algorithm or technique
that outputs a class label for any collection of values
of the p features submitted to its input. For designing
a classifier, also called discriminant analysis, we use
a labeled data set, Z, of n objects, where each object
is described by its feature values and true class label.

The fundamental idea used in statistical pat-
tern recognition is Bayes decision theory [2]. The c

classes are treated as random entities that occur with
prior probabilities P(ωi), i = 1, . . . , c. The posterior
probability of being in class ωi for an observed data
point x is calculated using Bayes rule

P(ωi |x) = p(x|ωi)P (ωi)
c∑

j=1

p(x|ωj)P (ωj)

, (1)

where p(x|ωi) is the class-conditional probability
density function (pdf) of x, given class ωi (see
Bayesian Statistics; Bayesian Belief Networks).
According to the Bayes rule, the class with the
largest posterior probability is selected as the
label of x. Ties are broken randomly. The Bayes
rule guarantees the minimum misclassification rate.
Sometimes the misclassifications cost differently for
different classes. Then we can use a loss matrix
� = [λij], where λij is a measure of the loss incurred
if we assign class label ωi when the true label is ωj .
The minimum risk classifier assigns x to the class
with the minimum expected risk

Rx(ωi) =
c∑

j=1

λijP (ωj |x). (2)

In general, the classifier output can be interpreted as
a set of c degrees of support, one for each class (dis-
criminant scores obtained through discriminant func-
tions). We label x in the class with the largest support.

In practice, the prior probabilities and the class-
conditional pdfs are not known. The pdfs can be esti-
mated from the data using either a parametric or non-
parametric approach. Parametric classifiers assume
the form of the probability distributions and then esti-
mate the parameters from Z. The linear and quadratic
discriminant classifiers, which assume multivariate
normal distributions as p(x|ωi), are commonly used
(see Discriminant Analysis). Nonparametric classi-
fier models include the k-nearest neighbor classifier
(k-nn) and kernel classifiers (e.g., Parzen, support
vector machines (SVM)). The k-nn classifier assigns
x to the class most represented among the closest k

neighbors of x.
Instead of trying to estimate the pdfs and applying

Bayes’ rule, some classifier models directly look for
the best discrimination boundary between the classes,
for example, classification and regression trees, and
neural networks.

Figure 1 shows a two-dimensional data set with
two banana-shaped classes. The dots represent the
observed data points, and members of the classes are
denoted by their color. Four classifiers are built, each
one splitting the feature space into two classification
regions. The boundary between the two regions is
denoted by the white line. The linear discriminant
classifier results in a linear boundary, while the
quadratic discriminant classifier results in a quadratic
boundary. While both these models are simple, for
this difficult data set, neither is adequate. Here,
the greater flexibility afforded by the 1-nn and
neural network models result in more accurate but
complicated boundaries. Also, the class regions found
by 1-nn and the neural network may not be connected
sets of points, which is not possible for the linear and
quadratic discriminant classifiers.

Classifier Training and Testing

In most real life problems we do not have a ready
made classification algorithm. Take for example,
a classifier that recognizes expressions of various
feelings from face images. We can only provide a
rough guidance in a linguistic format and pick out
features that we believe are relevant for the task. The
classifier has to be trained by using a set of labeled
examples. The training depends on the classifier
model. The nearest neighbor classifier (1-nn) does not
require any training; we can classify a new data point

2 Pattern Recognition

(a) (b)

(c) (d)

Figure 1 Classification regions for two banana-shaped classes found by four classifiers (a) Linear, (b) Quadratic, (c) 1-nn,
(d) Neural Network

right away by finding its nearest neighbor in Z. On the
other hand, the lack of a suitable training algorithm
for neural networks was the cause for their dormant
period between 1940s and 1980s (the error back-
propagation algorithm revitalized their development).
When trained, some classifiers can provide us with an
interpretable decision strategy (e.g., tree models and
k-nn) whereas other classifiers behave as black boxes
(e.g., neural networks). Even when we can verify the
logic of the decision making, the ultimate judge of
the classifier performance is the classification error.
Estimating the misclassification rate of our classifier
is done through the training protocol. Part of the data
set, Z, is used for training and the remaining part
is left for testing. The most popular training/testing
protocol is cross-validation. Z is divided into K

approximately equal parts, one is left for testing,
and the remaining K − 1 are pooled as the training
set. This process is repeated K times (K-fold cross-
validation) leaving aside a different part each time.

The error of the classifier is the averaged testing error
across the K testing parts.

Variable Selection

Not all features are important for the classification
task. Classifiers may perform better with fewer fea-
tures. This is a paradox from an information-theoretic
point of view. Its explanation lies in the fact that the
classifiers that we use and the parameter estimates
that we calculate are imperfect; therefore, some of the
supposed information is actually noise to our model.
Feature selection reduces the original feature set to
a subset without adversely affecting the classification
performance. Feature extraction, on the other hand,
is a dimensionality reduction approach whereby all
initial features are used and a small amount of new
features are calculated from them (e.g., principal
component analysis, projection pursuit, multidi-
mensional scaling).

Pattern Recognition 3

There are two major questions in feature selection:
what criterion should we use to evaluate the subsets?
and how do we search among all possible subset-
candidates? Since the final goal is to have an accurate
classifier, the most natural choice of a criterion is the
minimum error of the classifier built on the subset-
candidate. Methods using a direct estimate of the
error are called wrapper methods. Even with modern
computational technology, training a classifier and
estimating its error for each examined subset of
features might be prohibitive. An alternative class
of feature selection methods where the criterion is
indirectly related to the error are called filter methods.
Here the criterion used is a measure of discrimination
between the classes, for example, the Mahalanobis
distance between the class centroids.

For large p, checking all possible subsets is often
not feasible. There are various search algorithms, the
simplest of which are the sequential forward selection
(SFS) and the sequential backward selection (SBS).
In SFS, we start with the single best feature (accord-
ing to the chosen criterion) and add one feature at a
time. The second feature to enter the selected subset
will be the feature that makes the best pair with the
feature already selected. The third feature is chosen
so that it makes the best triple containing the already
selected two features, and so on. In SBS, we start with
the whole set of features and remove the single fea-
ture which gives the best remaining subset of p − 1
features. Next we remove the feature that results in
the best remaining subset of p − 2 features, and so
on. SFS and SBS, albeit simple, have been found to
be surprisingly robust and accurate. A modification
of these is the floating search feature selection algo-
rithm, which leads to better results at the expense of
an expanded search space. Feature selection is an art
rather than science as it relies on heuristics, intuition,
and domain knowledge. Among many others, genetic
algorithms have been applied for feature selection
with various degree of success.

Cluster Analysis

In some problems, the class labels are not defined in
advance. Then, the problem is to find a class structure
in the data set, if there is any. The number of clusters
is usually not specified in advance, which makes the
problem even more difficult. If we guess wrongly, we
may impose a structure onto a data set that does not

have one or may fail to discover an existing structure.
Cluster analysis procedures can be roughly grouped
into hierarchical and iterative optimization methods
(see Hierarchical Clustering; k -means Analysis).

Classifier Ensembles

Instead of using a single classifier, we may combine
the outputs of several classifiers in an attempt to reach
a more accurate or reliable solution. At this stage,
there are a large number of methods, directions, and
paradigms in designing classifier ensembles but there
is no agreed taxonomy for this relatively young area
of research.

Fusion and Selection. In classifier fusion, we
assume that all classifiers are ‘experts’ across the
whole feature space, and therefore their votes are
equally important for any x. In classifier selection,
first ‘an oracle’ or meta-classifier decides whose
region of competence x is in, and then the class label
of the nominated classifier is taken as the ensemble
decision.

Decision Optimization and Coverage Optimiza-
tion. Decision optimization refers to ensemble con-
struction methods that are primarily concerned with
the combination rule assuming that the classifiers in
the ensembles are given. Coverage optimization looks
at building the individual classifiers assuming a fixed
classification rule.

Five simple combination rules (combiners) are
illustrated below. Suppose that there are 3 classes
and 7 classifiers whose outputs for a particular x
(discriminant scores) are organized in a 7 by 3 matrix
(called a decision profile for x) as given in Table 1.
The overall support for each class is calculated by
applying a simple operation to the discriminant scores
for that class only. The majority vote operates on the
label outputs of the seven classifiers.

Each possible class label occurs as the final ensem-
ble label in the five shaded cells. This shows the
flexibility that we have in choosing the combination
rule for the particular problem.

We can consider the classifier outputs as new fea-
tures, disregard their context as discriminant scores,
and use these features to build a classifier. We can
thus build hierarchies of classifiers (stacked gen-
eralization). There are many combination methods

4 Pattern Recognition

Table 1 An ensemble of seven classifiers, D1, . . . ,D7:
the decision profile for x and five combination rules

Support
for ω1

Support
for ω2

Support
for ω3

Label
output

D1 0.24 0.44 0.56 ω3

D2 0.17 0.13 0.59 ω3

D3 0.22 0.32 0.86 ω3

D4 0.17 0.40 0.49 ω3

D5 0.27 0.77 0.45 ω2

D6 0.51 0.90 0.06 ω2

D7 0.29 0.46 0.03 ω2

Minimum 0.17 0.13 0.03 ω1

Maximum 0.51 0.90 0.86 ω2

Average 0.27 0.49 0.43 ω2

Product 0.0001 0.0023 0.0001 ω2

Majority – – – ω3

proposed in the literature that involve various degrees
of training.

Within the coverage optimization group are bag-
ging, random forests and boosting. Bagging takes
L random samples (with replacement) from Z and
builds one classifier on each sample. The ensemble
decision is made by the majority vote. The success
of bagging has been explained by its ability to reduce
the variance of the classification error of a single
classifier model. Random forests are defined as a
variant of bagging such that the production of the
individual classifiers depends on a random parameter
and independent sampling. A popular version of
random forests is an ensemble where each classifier
is built upon a random subsets of features, sampled
with replacement from the initial feature set.

A boosting algorithm named AdaBoost has been
found to be even more successful than bagging.
Instead of drawing random bootstrap samples, Ada-
Boost designs the ensemble members one at a time,
based on the performance of the previous member. A
set of weights is maintained across the data points
in Z. In the resampling version of AdaBoost, the
weights are taken as probabilities. Each training sam-
ple is drawn using the weights. A classifier is built on

the sampled training set, and the weights are modified
according to its performance. Points that have been
correctly recognized get smaller weights and points
that have been misclassified get larger weights. Thus
difficult to classify objects will have more chance to
be picked in the subsequent training sets. The proce-
dure stops at a predefined number of classifiers (e.g.,
50). The votes are combined by a weighted major-
ity vote, where the classifier weight depends on its
error rate. AdaBoost has been proved to reduce the
training error to zero. In addition, when the train-
ing error does reach zero, which for most classifier
models means that they have been overtrained and
the testing error might be arbitrarily high, AdaBoost
‘miraculously’ keeps reducing the testing error fur-
ther. This phenomenon has been explained by the
margin theory but with no claim about a global con-
vergence of the algorithm. AdaBoost has been found
to be more sensitive to noise in the data than bag-
ging. Nevertheless, AdaBoost has been declared by
Leo Breiman to be the ‘most accurate available off-
the-shelf classifier’ [1].

Pattern recognition is related to artificial intelli-
gence and machine learning. There is renewed inter-
est in this topic as it underpins applications in modern
domains such as data mining, document classifica-
tion, financial forecasting, organization and retrieval
of multimedia databases, microarray data analysis
(see Microarrays), and many more [3].

References

[1] Breiman, L. (1998). Arcing classifiers, The Annals of
Statistics 26(3), 801–849.

[2] Duda, R.O., Hart, P.E. & Stork, D.G. (2001). Pattern
Classification, 2nd Edition, John Wiley & Sons, New
York.

[3] Jain, A.K., Duin, R.P.W. & Mao, I. (2000). Statistical
pattern recognition: a review, IEEE Transactions on
Pattern Analysis and Machine Intelligence 22(1), 4–37.

LUDMILA I. KUNCHEVA AND CHRISTOPHER

J. WHITAKER

