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a b s t r a c t 

In the Restricted Set Classification approach (RSC), a set of instances must be labelled simultaneously into 

a given number of classes, while observing an upper limit on the number of instances from each class. 

In this study we expand RSC by incorporating prior probabilities for the classes and demonstrate the 

improvement on the classification accuracy by doing so. As a case-study, we chose the challenging task 

of recognising the pieces on a chessboard from top-view images, without any previous knowledge of the 

game. This task fits elegantly into the RSC approach as the number of pieces on the board is limited, and 

each class (type of piece) may have only a fixed number of instances. We prepared an image dataset by 

sampling from existing competition games, arranging the pieces on the chessboard, and taking top-view 

snapshots. Using the grey-level intensities of each square as features, we applied single and ensemble 

classifiers within the RSC approach. Our results demonstrate that including prior probabilities calculated 

from existing chess games improves the RSC classification accuracy, which, in its own accord, is better 

than the accuracy of the classifier applied independently. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

Restricted Set Classification (RSC) refers to the following prob-

lem. Given is a set containing m instances, X = { x 1 , . . . , x m 

} , where

x j ∈ R 

n , j = 1 , . . . , m, is a data point in some n -dimensional space.

Each instance must be labelled in one of c classes from the set

� = { ω 1 , . . . , ω c } . It is known that the maximum number of in-

stances from class ω i , present within X , is k i , i = 1 , . . . , c. Thus the

cardinality of X must satisfy 1 ≤ | X| ≤ ∑ c 
i =1 k i . 

The solution to this problem is not straightforward. If a clas-

sifier is trained and then applied for labelling the instances in

X (called the ‘independent classifier’), the obtained labels are not

guaranteed to meet the count constraints. Incorporating these con-

straints into the classification process has been shown to lead to an

improvement on the accuracy of the independent classifier [14,15] .

Here we hypothesise that a further improvement can be achieved

if prior probabilities depending on the whole of X are considered

by the RSC set classifier. 

Examples of real-life RSC problems include recognising people

in a group (e.g., for attendance monitoring of the students in a

class [1] or for tracking [17] ) and identification of animals for the

purposes of monitoring and conservation [7,13] . A particularly suit-
∗ Corresponding author. . 
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ble application is identifying the pieces on a chessboard from an

mage. When classifying chess pieces together , we can take advan-

age of the knowledge that there can only be a given number of

bjects from each class. For example, there can be at most eight

hite pawns on the board. In this paper, we chose chessboard

ecognition as an example to demonstrate the expected improve-

ent on the classification accuracy of the independent classifier

hen using prior probabilities. 

The rest of the paper is organised as follows. The RSC approach

s detailed in Section 2 . Our proposed extension is described in

ection 3 . Section 4 contains our case-study which demonstrates

he improvement of the proposed approach over the original RSC

n recognising chess pieces on a board. Section 5 offers our conclu-

ions and ideas for future work. 

. Restricted Set Classification (RSC) 

RSC is detailed in Algorithm 1 . The RSC approach operates

y applying a pre-trained classifier D to X to acquire estimates

f the posterior probabilities for every instance within, and mak-

ng an optimal label assignment while observing the count re-

triction. The classifier D is termed the independent classifier as

t is trained on independent, identically distributed (i.i.d.) data,

nd is oblivious to any count limits. This can be any classi-

er which returns estimates of the posterior probabilities, D (x ) =
 P (ω | x ) , . . . , P (ω c | x ) } . Denoting the space of probability distri-
D 1 D 

https://doi.org/10.1016/j.patrec.2018.04.018
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2018.04.018&domain=pdf
mailto:l.i.kuncheva@bangor.ac.uk
https://doi.org/10.1016/j.patrec.2018.04.018
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Algorithm 1: Restricted Set Classification. 

Input : Pre-trained classifier D : R 

n → P (�) , the allowed 

number of instances from each class K = { k 1 , . . . , k c } , a 
set of instances to be classified together 

X = { x 1 , ..., x m 

} , x i ∈ R 

n . 

Output : Labels L for the instances in X . 

// acquire probability matrix P p 

1 for i ← 1 , . . . , m do 

2 P p (i, 1 : c) ← D (x i ) 

// construct augmented probability matrix P a 

3 P a ← ∅ . 
4 for i ← 1 , . . . , m do 

5 cc ← 1 // column counter 
6 for j ← 1 , . . . , c do 

7 for k ← 1 , . . . , k i do 

8 P a (i, cc) ← P p (i, j) 

9 cc ← cc + 1 

// find optimal label assignment M 

10 M ← hungarian-assignment( − log (P a ) ) 
11 L ← retrieve-labels( M) 

12 Return L . 
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utions over � by P(�) , we have D : R 

n → P(�) . It is desirable

hat these estimates are well calibrated [5] . 

D can be a single classifier or a classifier ensemble itself, as

ong as the output is a probability distribution. Straightforward es-

imates of the posterior probabilities from a classifier ensemble are

he proportions of votes for the respective classes. 

The posterior probability estimates for all instances in X are or-

anised in an m × c “probability matrix” P p , where row i represents

he probability distribution obtained from D for instance x i ∈ X .

ubsequently, an augmented probability matrix, P a is constructed

y repeating each column of P p as many times as the number

f allowed instances from the corresponding class. For example, if

 1 = 3 and k 2 = 4 , the first three columns of P a will be copies of

he first column of P p , followed by four copies of the second col-

mn of P p . Thus the size of P a is m × q , where q = 

∑ c 
i =1 k i . We have

reviously proved [14,15] that the optimal assignment guarantee-

ng the minimum Bayes error in labelling the whole of X requires

hat the product of the posterior probabilities is maximum, that is

 ω 

∗
1 , ω 

∗
2 , . . . , ω 

∗
m 

〉 = arg max 
〈 ω (a ) 

1 
,ω (a ) 

2 
, ... ,ω (a ) 

m 〉 

m ∏ 

i =1 

P 
(
ω 

(a ) 
i 

| x i 

)
, (1)

here ω 

(a ) 
i 

is the class label assigned to x i , and ω 

∗
i 

is the optimal

abel. This optimisation must be carried out subject to the con-

ition that the number of labels for class ω j in the returned set

ust be no greater than the restriction constant k j , j = 1 , . . . , c.

he construction of the augmented matrix with posterior proba-

ilities guarantees the compliance with the constraints. In order to

nd the optimal 〈 ω 

∗
1 , ω 

∗
2 , . . . , ω 

∗
m 

〉 , we need a matching procedure.

he Hungarian algorithm finds the optimal match which minimises

he sum (or cost) of assignments. Therefore, in order to use this al-

orithm we convert the product in Eq. (1) into a sum of logarithms.

s we are seeking to maximise this sum while the algorithm looks

or minimum cost, we submit to the Hungarian algorithm the ma-

rix with the negative logarithms P a . 

The output of the Hungarian algorithm is a binary matrix M of

he same size as P a ( m × q ), containing 1s where rows are assigned

he column label, and 0s elsewhere. Each row (instance in X ) has

ne and only one assigned column. The class label of the instance
s retrieved by identifying which class label has given rise to the

olumn in P a . In the above example, if a column between 1 and 3

ontains the 1 for the row, the label for the instance is ω 1 . Alter-

atively, if the 1 is in one of the columns between 4 and 7, class

 2 will be retrieved. 

The theoretical grounds and empirical evidence that the RSC

orks better than m independent applications of D to the elements

f X are given in the original work [15] . Here we are interested

n extending RSC to incorporate prior probabilistic information, as

roposed next. 

. Incorporating a conditional prior into RSC 

Suppose that by analysing a large prior database, we were able

o obtain prior probabilities depending on some parameter of the

et of instances X . This parameter can be, for example, the car-

inality of X or some relationship between the instances in X ,

= θ (X ) . Say, we are recognising the students in a class from a

hoto of the classroom. While the students can sit wherever they

hoose in the classroom, some usually pick the same seats. We can

se a parameter such as 

= Sitting in the first row? (y/n) , 

nd pre-calculate a prior probability for each student (class) con-

itioned on θ . The appearance of the student’s face in the photo,

hich would be their feature vector x , will not depend on θ . 

Denote by P P ( ω i | θ ) the conditional prior probability for class

 i , i = 1 , . . . , c. To integrate this probability within the probabili-

ies obtained from the independent classifier, P D , we use 

 (ω k | x , θ ) = 

P (x , θ | ω k ) P (ω k ) 

P (x , θ ) 

ssuming independence between x and θ , 

 (ω k | x , θ ) = 

P (x | ω k ) P (θ | ω k ) P (ω k ) 

P (x ) P (θ ) 

= 

P (x | ω k ) P (ω k ) 

P (x ) ︸ ︷︷ ︸ 
posterior 

P (θ | ω k ) 

P (θ ) 

ultiplying and dividing by P ( ω k ), 

 (ω k | x , θ ) = P (ω k | x ) 
P (θ | ω k ) P (ω k ) 

P (θ ) 

1 

P (ω k ) 

= P (ω k | x ) 
P (ω k | θ ) 

P (ω k ) 
. 

Any estimate of the probabilities can be plugged in this equa-

ion. In our case: 

 E (ω k | x , θ ) = P D (ω k | x ) ︸ ︷︷ ︸ 
from D 

P P (ω k | θ ) 

P P (ω k ) ︸ ︷︷ ︸ 
from the prior database 

. 

We may wish to control the influence of the conditional prior

robability on the final posterior probability. Therefore we intro-

uce a tunable parameter, β ∈ [0, 1], as follows: 

 E (ω k | x , θ ) = P D (ω k | x ) 

[
P P (ω k | θ ) 

P P (ω k ) 

]β

. (2)

This probability distribution across the class labels � should be

alculated for each instance x j ∈ X and used instead of D ( x j ) in con-

tructing P p in Algorithm 1 . 

Note that the conditional prior is only available in relation

o the whole set X . Arguably, this probability extension can be

hought of as coming from an extra classifier built upon an alter-

ative feature space containing only θ . 
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At this point, several questions may arise: What kind of class

priors should be used? How could the choice of such priors im-

pact the overall performance of the proposed extension? In theory,

adding a new feature (in this case θ ) to a given classifier model

cannot harm the performance, but can improve it. Our model of

including this new feature depends on two factors: the indepen-

dence assumption holding, and the accuracy of the approximation

of the probabilities of interest P P ( ω k | θ ) and P P ( ω k ). 

For the task of chess piece recognition, our θ is the number of

pieces on the board and the position of the square. We can as-

sume that θ and the appearance of the image of a square x do

not depend on one another as the photographs are taken in the

same way regardless of the number of pieces. Then the decid-

ing factor is the accuracy of approximation of the two probabil-

ities. While P P ( ω k ) is easy to obtain even from a small number

of boards, P P ( ω k | θ ) requires a lot more data. In order to find a

reasonably accurate approximation for each square, given the to-

tal number of pieces on the board, a large number of boards must

be available. Note that the “heavy-duty” data collection in our case

is acquiring the images of the boards and the squares, while esti-

mating the probabilities from hundreds of thousands of recorded

games requires only a simple calculation. The availability of large

databases of historical chess game records gave us the idea to ex-

emplify the RSC extension by chess piece recognition. We investi-

gate in Section 4.6 the sensitivity of our method to the number of

data samples from which P P ( ω k | θ ) is calculated. 

In this paper we raise a new hypothesis: by including prior

probabilities in the RSC, the obtained set classifier will be signif-

icantly better than that without the prior probabilities, and also

significantly better than the independent classifier, with or with-

out the conditional prior probability. While a single example can-

not corroborate the overall validity of our hypothesis, below we

provide support for it through a case study. 

4. A case study: recognising chess pieces on a board 

While online chess games are played using a representation of

the board on the screen, rated games are usually played in the tra-

ditional way, face to face, over a physical, three-dimensional board.

Most commonly, games are recorded by the players on a piece of

paper as they play, and at the end of the game the moves are man-

ually entered into chess software. For some professional games,

such as the World Championships or high-level tournaments, the

games are played on DGT (Digital Games Technology) electronic

boards [23] , which can sense the identity and location of pieces

on the board. However electronic boards are expensive. A cheaper

alternative would be to use images or video-feed from a standard

physical chessboard. 

4.1. Related work 

Since the late 18th century, when a fake chess-playing machine

called The Turk, (the Mechanical Turk or the Automaton Chess

Player) was introduced to the Empress Maria Theresa, robotic

chess-players have attracted the attention of the public and re-

searchers alike. A full-scale design of playing robot relying on

machine vision must address the problems of the physical piece

movement in addition to the processing of the video-feed, recog-

nising the move of the opponent, and querying a chess engine to

identify the best move that the robot should make [4,6,16,22] . 

Almost invariably, the systems for chess board and piece recog-

nition are based on image difference. A pair of images is acquired,

one “before” the move, called the reference image, and one “after”

the move. The difference is used to identify a region-of-interest

in the image. Combined with the knowledge of the piece posi-

tions before the move, and the possible legal moves, this approach
akes the identification problem much easier than using a single

mage and no history of the game progression. 

Depending on the physical set-up, different approaches have

een proposed for piece recognition. Cour et al. [6] use an over-

ead webcam to track the moves, as do Wang and Green [24] , Ko-

ay and Sümer [12] , and Illeperuma [10] , while Chen et al. [4] view

he board from a camera held at a small angle from the vertical.

iškorec et al. [21] , on the other hand, use an overhead camera to

rack the moves in conjunction with a second camera with a side-

iew to identify piece types. The current consensus is that a top-

iew camera is of no use for piece recognition [9,19,21] . Side views

ontain information about the piece silhouettes, which is deemed

ore suitable for the task [9,21] . The features (descriptors) are typ-

cally the Fourier coefficients of the cumulative angular function of

he shape [25] . A problem with this approach is that pieces may

ot be clearly visible, hence occlusion by other pieces may need

o be taken into consideration. Schwenk and Yuan [22] create 3-D

odels of the shapes, and subsequently render and project a 3-D

mage of a piece onto the board. They match the projection to the

ide board view, and choose the pieces whose projection matches

he current image most closely. Often, the board is modified in

rder to allow for identification of the squares which does not

nterfere with the piece recognition. For example, red and green

olours are chosen for dark and light squares, instead of the stan-

ard equipment used in chess tournaments [9,10,21] . 

The shortcomings to the tracking approach are as follows: (1)

he initial position must be known, and manually entered in the

racking system; (2) if a move is misidentified, subsequent posi-

ions will be affected, propagating the error. 

As opposed to tracking the position of the pieces, there is very

ittle literature on piece recognition from a single static image. The

ilhouette approaches could be useful but the occlusion problem

ay prove a significant obstacle without knowledge of the previ-

us position of the board. If the image is taken at an angle which

avours the silhouettes, the information about the square occu-

ancy may become insufficient or unreliable. In this paper, we take

he task of identifying the whole chess board from a top-view im-

ge, without any knowledge of the game moves leading to the cur-

ent position. 

.2. Chess piece recognition as an RSC problem 

There are 13 classes of chess pieces as shown in Table 1 . The

ndependent classifier D will be trained with cropped images of

quares from the chessboard. Each square is pre-labelled into one

f the 13 classes. Table 1 also shows the maximum allowed num-

er of pieces ( k i ) for each class. 

The set X contains 64 images of squares which make up a

hole board. 

The parameter θ in our case study consists of two components:

he (estimated) number of pieces on the board, and the position of

he square in the board. To incorporate this information, we treat

oth the board position and the number of pieces as nominal vari-

bles, and use a look-up table with pre-calculated probabilities. 

Denote by t the number of pieces on the chess board, t ∈
 2 , 3 , . . . , 32 } , and by r the position of a square, r ∈ { 1 , 2 , . . . , 64 } .
hen P P (ω i | θ ) = P P (ω i | t, r) is the conditional prior in Eq. (2) . 

Since we aim to recognise one whole board at a time, X con-

ains all the squares in the board ( | X| = 64 ), and the size of the

ugmented matrix in Algorithm 1 , P a , is 64 × 94. 

The number of pieces is not immediately available for a given

 . We assume that distinguishing empty from non-empty squares

s an easier task compared to any piece recognition. Therefore we

ake the estimate of the number of pieces t from our classifier ap-

lied on X . 
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Table 1 

Classes in the chess-pieces recognition problem, and the limit number for each class in a standard chess game. 

Class #: 1 2 3 4 5 6 7 8 9 10 11 12 13 

King Queen Rook Bishop Knight Pawn King Queen Rook Bishop Knight Pawn Empty 

Numbers allowed: 1 1 2 2 2 8 1 1 2 2 2 8 62 
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Fig. 1. Top-view image of the chessboard with segmented squares. (For interpreta- 

tion of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 
It is difficult to advise a researcher on the choice of θ for their

pecific problem. In fact, the availability of large number of past

ecords of chess games guided us to choose the number of pieces

or each square as a prior. This choice came before the statistical

orkout. Suitable candidates for the priors’ parameter would be

asily obtainable features from large existing databases or the In-

ernet, for example using web-priors for video summarisation [11] .

.3. Organisation of the experiment 

.3.1. Data 

We used a collection D of 3583 games from edition 1144 of The

eek in Chess Magazine, published online on 10/10/2016. 1 

The data was divided into three parts. 
• We sampled 100 boards from D as the training data, D 2 ,

hich we use to explore the influence of the tunable parameter

in Eq. (2) on the accuracy of the extended RSC. 
• Another set of 100 boards was sampled from D as the testing

ata, called D 3 . 
2 This data set was not seen at any stage of the

raining. Using the parameter values chosen on D 2 , and training a

lassifier on the whole of D 2 , we subsequently tested all accuracies

f interest on D 3 . 
• The reminder of D, after removing D 2 and D 3 , was taken for-

ard as D 1 , from which we calculated the prior probabilities. Note

hat data D 1 is not used for anything else during training and test-

ng. 

The 200 boards for D 2 and D 3 were arranged on a physi-

al board and photographed from above. The top-view images of

he chessboards were processed to separate the individual squares

n each board. An example of the colour-enhanced image of a

oard with the square corners marked with green x is shown in

ig. 1 . The inner 7-by-7 grid-points were detected 

3 and were sub-

equently augmented with the outer grid points to achieve the seg-

entation shown in the figure. 

Examples of the acquired images for sets D 2 and D 3 are shown

n Fig. 2 . The only features we considered first were the grey level

ntensities of the pixels. Each square was resized to a given resolu-

ion and the pixel intensities were concatenated. For example, for

 10-by-10 resolution, each square was represented by 100 features

pixel intensities). 

The majority of our experiments are carried out with this most

asic set of features for at least two reasons: (1) to make the clas-

ification task reasonably difficult so that we can showcase the

ifference between the proposed and the standard solutions; (2)

o ensure that our experiments would be easily reproducible by

 non-expert. We further experiment with more advanced feature

epresentations, as reported in Section 4.5 . 

We experimented with squares with the following resolutions:

 × 5, 10 × 10, 25 × 25, and 50 × 50. 4 
1 http://theweekinchess.com/twic . 
2 The indices of the sampled boards are available in MATLAB format from https: 

/github.com/LucyKuncheva/Chess- piece- recognition . 
3 MATLAB function detectCheckerboardPoints was used. 
4 The images of the training and testing data with resolution 100 × 100 are pro- 

ided in GitHub: https://github.com/LucyKuncheva/Chess- piece- recognition . Fig. 2. Examples of the images of the 13 classes of squares on the chessboard. 

http://theweekinchess.com/twic
https://github.com/LucyKuncheva/Chess-piece-recognition
https://github.com/LucyKuncheva/Chess-piece-recognition
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Fig. 3. Partial accuracy (standard classification accuracy) A P for the 4 independent 

classifier models. Triangle markers indicate that the top value is not significantly 

higher than the lower one at significance level 0.05 (paired right-tailed t -test). (For 

interpretation of the references to colour in the text, the reader is referred to the 

web version of this article.) 
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4.3.2. The independent classifier 

Bearing in mind that the output of the independent classifier

must be estimates of the posterior probabilities for the classes in

�, we chose the following collection of models for D : 

1. A customised nearest neighbour classifier (c-1nn) which returns

posterior probabilities based on the distance between the in-

stance x ∈ R 

n and its nearest neighbour from each class. Then

the posterior probability for class ω i is estimated through the

softmax rule: 

P D (x | ω i ) = 

exp (−d i ) ∑ c 
j=1 exp (−d j ) 

, 

where d i is the distance between x and its nearest neighbour

among the reference points from class ω i . 

2. Bagging classifier ensemble with decision trees as the base clas-

sifier [2] . We set the number of classifiers to 200. The posterior

probabilities are calculated as the proportion of individual clas-

sifiers which vote for the respective class. This calculation is the

same for all ensemble methods used as D . 

3. Random Subspace classifier ensemble with 1-nn as the base

classifier. Twenty features were sampled for each base classi-

fier. 

4. Random Forest ensemble with 200 classifiers [3] . 

4.3.3. Experimental protocol 

Using D 1 , we calculated the look-up table of size 31 × 64 × 13

(number of pieces, 5 number of squares, number of classes). Entry

( i, j, k ) in the table is an estimate of 

P P (ω k | t = i + 1 , r = j) , 

where t is the number of pieces on the board, and r is the position

of the square out of the 64 possible positions. To calculate this es-

timate we first located the position of the square, and then took

the number of occurrences of each piece in this square. The pro-

portion of occurrences of a given piece was taken as the estimate
ˆ P P (ω k | t = i + 1 , r = j) . 

The prior probabilities P P ( ω i ) were calculated from D 2 as the

proportion of the classes. 

Next we ran a training cycle to determine the best parameter

value, choosing among: β = { 0 . 01 , 0 . 03 , . . . , 0 . 19 } . For each classi-

fier model, we ran a 100-fold cross-validation on D 2 . Each fold was

a complete chessboard containing 64 instances. The reason for this

choice is that we are interested in two measures of the accuracy

with respect to X [15] : 

• A P , partial accuracy: A P is the proportion correctly labelled in-

stances in X (the conventional estimate of the classification ac-

curacy). 
• A T , total accuracy: A T = 1 if all labels are correctly assigned to

the instances in X , and A T = 0 , otherwise. 

For every fold, we calculated the pair of accuracies ( A T , A P ) for

the following scenarios, where the testing set X was the chessboard

left outside the training: 

1. D , the independent classifier applied on its own. 

2. D + P, where P stands for ‘conditional prior’. The label for x

is assigned by the maximum P E ( ω k | x , t, r ), k = 1 , . . . , c, as in

Eq. (2) . 

3. RSC( D ), where the Restricted Set Classification model is applied

only with the independent classifier D , as in [15] . 

4. RSC( D + P ), which is the proposed extension. 
5 Minimum possible number of pieces left on the board is 2, and maximum is 

32. 

u  

i  

S  

l  
For each classifier model, we chose β which maximised A T for

he respective scenario . These parameter values were taken forward

or the classification of the testing data D 3 . 

Finally, we applied the 4 classifier models of D and the 4 sce-

arios to D 3 . Each of the 100 chessboards was considered as X , and

he two accuracies ( A T , A P ) were calculated. 

As we are interested in the difference between the proposed

xtension RSC( D + P ) and the non-extended versions, we ran a sta-

istical test. The null hypothesis H 0 was that there is no difference

etween the mean accuracy ( A T or A P ) of RSC( D + P ) and the cho-

en rival among the other three scenarios. The alternative hypoth-

sis H 1 was that the mean accuracy of RSC( D + P ) is higher than

hat of the rival scenario. As all accuracies are commensurable, we

an a right-tailed paired t -test. 

For comparing the paired A T scores for D 3 , we note that they

re collections of 100 binary values, which we can interpret as

rue (all squares on the board labelled correctly) and false (there

as been at least one mistake). The statistical test suitable for this

ype of data is the McNemar test [18] . The null hypothesis H 0 for

his test is that there is no difference between the proportion of

s in both candidate sets. The alternative hypothesis H 1 is that the

roportions are not equal (the difference could be in either direc-

ion). 

.4. Results 

Figs. 3 and 4 show respectively accuracies A P and A T for the

our models chosen for the independent classifier D as functions

f the image resolution. All 4 scenarios are plotted in every di-

gram. Red lines and small triangle markers indicate that RSC is

sed, while black lines and square markers indicate that only an

ndependent classifier is used, be it with or without modifications.

olid lines show the scenarios where priors are used, and dashed

ines, the scenarios without the proposed extension. Large trian-
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Fig. 4. Total accuracy A T for the 4 independent classifier models. Triangle markers 

indicate no significant difference from the top point at significance level 0.05 (Mc- 

Nemar test). (For interpretation of the references to colour in the text, the reader is 

referred to the web version of this article.) 
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Table 2 

Partial accuracy A P in % for the four scenarios and the two 

feature spaces. All statistical tests (right-tailed t -test) con- 

firmed that RSC( D + P) is significantly better than the other 

three scenarios. 

CL FS D D + P RSC( D ) RSC( D + P) 

LDC LBP 81.94 88.48 82.50 89.53 

HOG 96.27 96.63 96.80 97.16 

1nn LBP 85.23 87.61 86.17 89.38 

HOG 94.86 95.33 95.08 95.66 

BAG LBP 84.30 89.33 84.98 90.28 

HOG 94.22 95.47 94.52 95.84 

RS LBP 84.38 88.88 85.06 89.81 

HOG 96.22 96.70 96.66 97.06 

RF LBP 84.47 89.33 85.17 90.41 

HOG 93.98 95.38 94.56 95.84 

Notes: CL, classifier model; FS, feature space. 

Table 3 

Total accuracy A T in % for the four scenarios and the two feature spaces. 

The values found to be not significantly different from RSC( D + P) by 

the McNemar test are shown in boxes. 

o  

t
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d  

t  

m  
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t  
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f  

c  

q  

s  
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t  

g  

R

 

R  

e

le markers indicate no significant difference from the RSC( D + P )

oint at significance level 0.05 using paired right-tailed t -test. For

ll other points below the RSC( D + P ) graph, the difference is sta-

istically significant. 

It can be seen that, in both figures, the lines for RSC( D + P ) are

bove the lines for the rival scenarios, which demonstrates the ad-

antage of our proposed extension of RSC. The patterns for all ex-

mined classifier models are very similar, indicating the robustness

f the proposed extension. The proposed extension is also not sen-

itive to the image resolution; it dominates the rival scenarios for

ll four resolutions. 

.5. Experiments with other feature representations 

To strengthen the message that including conditional prior

robabilities improves the Restricted Set Classification (RSC), we

xtracted two additional feature spaces from the image data: the

ocal binary feature descriptors (LBP) [20] and histogram oriented

radients (HOG) [8] . Both feature spaces are orientation-invariant,

nd very useful descriptors for object’s shape and texture. The ex-

erimental protocol is the same as with the grey scale intensity

ata but this time we did not tune specifically the power constant

. We set it at β = 0 . 1 for all experiments. Again, the classifier

as trained on D 2 and the accuracies A P and A T for the four sce-

arios were calculated on the unseen testing data D 3 . The results

or A P and A T are reported in Tables 2 and 3 , respectively. Statistical

ests were carried out again to determine whether the accuracies

btained through the proposed method RSC (D + P ) are indeed sig-

ificantly higher than those of D , D + P, and RSC( D ). Paired right-

ailed t -test was applied for A P , and McNemar test for A T . All dif-

erences in favour of A P for both feature spaces were found to be

ignificant. On the other hand, statistical significance was not ob-

erved as often for A T . Still, we note that all values of A T for RSC

(D + P ) were strictly greater than those for the other three meth-
ds (apart from LBP and Random Subspace where the values are

he same). 

Overall, LBP feature space was less successful than HOG. HOG

howed similar accuracies to the ones obtained with the grey scale

ntensity features. 

This experiment reinforces our observation that including the

onditional prior probability improves RSC, and this improvement

s not tied up to a serendipitous choice of a specific feature space. 

.6. Sensitivity to sample size 

The proposed extension would work if there is a substantial

ata resource from which we can calculate good estimates of

he conditional priors P P ( ω i | θ ). To evaluate the sensitivity of the

ethod to different data sizes, we carried out the following exper-

ment. The prior probabilities were calculated from data of sizes K

aking values: 10 0 0, 50 0 0, 10,0 0 0, 50,0 0 0, 10 0,0 0 0, 20 0,0 0 0, and

0 0,0 0 0. We chose the linear discriminant classifier with the HOG

eature space as this combination was found to be the most ac-

urate one in Section 4.5 . Fig. 5 shows A P as a function of K . The

uality of the estimates improves and levels off with the size, and

o does the classification accuracy A P of D + P and RSC (D + P ) . For

 and RSC( D ), the accuracy is constant as they do not depend on

he estimated prior probabilities. As before, we depict with trian-

les the accuracies which are not significantly different from A P of

SC( D ) according to the right-tailed paired t -test. 

This experiment indicates that in order to take advantage of the

CS extension, we need access to large data or accurate probability

stimates obtained from other sources. 
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Fig. 5. Partial accuracy A P as a function of the number of instances from which the 

prior probabilities P P ( ω i | θ ) were calculated. The experiments were carried out with 

HOG features and LDC classifier. 
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5. Conclusions 

In this study we extend the Restricted Set Classification (RSC)

approach. We propose that including prior probabilities related to

the set of instances X being classified together improves on the

overall accuracy of the set classifier. The paper proposes a formal

way of including these probabilities and weighting their contribu-

tion. 

Our hypothesis is tested on a real-life instance of an RSC prob-

lem: recognising the pieces on a chessboard from a top-view im-

age. Our experiment demonstrated that including prior probabili-

ties improves significantly the performance of RSC, which in itself

is a better solution to the RSC problem compared to an indepen-

dently applied classifier D . This improvement was found to be ro-

bust with respect to the classifier model used as D , and also with

respect to the image resolution. 

The practical aspect of the case study is that, by using an ex-

tended RSC approach, we can achieve a good classification accuracy

where this was deemed impossible in the literature: classification

of the pieces on a chessboard from a single top-view image, with-

out knowing the game moves leading to the current position, and

without marking or modifying the chess board and the pieces in

any way. 

The extended RSC approach can be applied for any represen-

tation of the objects, not only the top-view squares. A side-view

sub-image could be added to the top-view representation of each

square, or the features extracted from the different images could

be concatenated. 

It will be interesting to extend the RSC approach further, in at

least two directions. First, the posterior probabilities for the inde-

pendent classifier D can be honed by incorporating evidence from

the past success of D in assigning a given label. Second, relation-

ships between the instances in X can be useful for the overall as-

signment of the labels. For example, suppose that we are recog-

nising the individual students in a class from head-and-shoulder

snapshots. Suppose that we know that Peter and John are best

friends, and are usually both present or both absent. The posterior

probabilities can be altered based on this piece of knowledge. 
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