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a b s t r a c t 

High-dimensional data with very few instances are typical in many application domains. Selecting a 

highly discriminative subset of the original features is often the main interest of the end user. The widely- 

used feature selection protocol for such type of data consists of two steps. First, features are selected 

from the data (possibly through cross-validation), and, second, a cross-validation protocol is applied to 

test a classifier using the selected features. The selected feature set and the testing accuracy are then 

returned to the user. For the lack of a better option, the same low-sample-size dataset is used in both 

steps. Questioning the validity of this protocol, we carried out an experiment using 24 high-dimensional 

datasets, three feature selection methods and five classifier models. We found that the accuracy returned 

by the above protocol is heavily biased, and therefore propose an alternative protocol which avoids the 

contamination by including both steps in a single cross-validation loop. Statistical tests verify that the 

classification accuracy returned by the proper protocol is significantly closer to the true accuracy (esti- 

mated from an independent testing set) compared to that returned by the currently favoured protocol. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Selecting a feature subset of low cardinality and high discrim-

ination power has been a centre-stage quest since the dawn of

pattern recognition [1–4] . Feature selection from high-dimensional

data has been extensively studied [5–12] . In many cases, fea-

ture selection is sought as the end goal of the data analysis.

For example, the user may wish to know which combination

of genes out of several thousand genes forms a distinctive sig-

nature for a particular disorder [13] . In neuroscience, the user

may be interested in the multi-voxel patterns of brain activa-

tion which discriminate between different cognitive states. Find-

ing such multi-voxel patterns can be cast as a feature selection

problem [14] . 

Wide datasets are characterised by a large number of features

(high dimensionality) and a small number of objects. Such wide

datasets are common in many areas, examples of which are neu-

roimaging, bioinformatics, psychology, and sport sciences. What if

the available sample has only a couple of dozens examples? This

may happen when data does not exist in abundance, for exam-

ple, studies of rare diseases or extraordinary athletes. Sometimes

collecting of such data is prohibitively expensive or destructive.
∗ Corresponding author. 
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ow reliable are any conclusions drawn from such datasets? In

articular, how meaningful is feature selection? Ultimately, we can

ffer the user a subset of the original features, together with a

rained classifier model, and an estimate of the classification ac-

uracy. The classification accuracy in itself is a gauge of how good

he returned feature set is. Here we argue that, quite often, we

re misleading the user by returning to them an optimistically bi-

sed estimate of the classification accuracy. One reason for this

ias is the so called “peeking phenomenon”, which has already

een brought to the attention of the community [15,16] , especially

n the light of experimenting with high-dimensional data [17,18] .

he “peeking” happens if the data for testing the model is seen

uring some part of the training. Peeking usually happens when

here is a preliminary training stage, for example data quantisa-

ion, feature selection, or parameter tuning. The effect is that the

stimate of the classification accuracy which we return to the user

ay be optimistically biased. More importantly, the returned fea-

ure set may also be an artefact rather than a highly discriminative

et. 

While the caution of overfitting in feature selection has been

aised several times over the past years [15,16] , it does not seem

o have been properly addressed by the larger community, and

specially in applications which are most vulnerable. Curiously, a

omprehensive recent survey by Li et al. [19] does not even men-

ion the issue, while another one considers only the training data

https://doi.org/10.1016/j.patcog.2018.03.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2018.03.012&domain=pdf
mailto:l.i.kuncheva@bangor.ac.uk
mailto:jjrodriguez@ubu.es
https://doi.org/10.1016/j.patcog.2018.03.012
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or feature selection [20] . 1 Instead, these studies review elaborate

ethods for stable, sparse, and multi-source feature selection from

ide data. All these developments critically depend on using the

orrect training/testing protocol, and may not be adequate at all

or very small sample size data. The difficulty in offering a sta-

le and unbiased estimate of the classification accuracy may ren-

er the selected feature subsets no better than chance. In addi-

ion to joining the appeal for clean, non-contaminated feature se-

ection protocols, here we set out to address two further issues.

irst, we demonstrate the deficiency of the widely used (flawed)

rotocol using 24 high-dimensional datasets, three feature selec-

ion methods and 5 classifiers. Second, we propose a clean pro-

ocol and show that its accuracy matches significantly closer the

ccuracy estimated from a properly sized datasets. The rest of

he paper is organised as follows. Related work is presented in

ection 2 . Section 3 discusses the right and the wrong protocol

or feature selection, and gives an example of the optimistic bias

hich the wrong protocol is prone to. Section 4 reports and dis-

usses our experimental results, followed by our recommendations

n Section 5 . 

. Related work 

.1. Many studies are unaware of the overfitting caveat 

Smialowski et al. [16] and Reunanen [15] warn about the op-

imistic bias of an improperly applied feature selection protocol,

nd emphasise the importance of using testing data unseen at any

art of the feature selection and the classifier training. In spite of

his warning, “peeking” is still widely present, casting doubts in

he findings of the respective studies. Sometimes it is not clear

hether the training/testing protocol has been applied only to

esting the classifier or to the feature-selection-classifier-training

ogether. A keyword search for the joint term ‘feature selection’

n Web-of-Science, 2 carried out on the 11 January 2018 returns

ver 2300 articles since 2017. A thorough systematic analysis of

hese publications in the light of our research question is infea-

ible, hence we opted for a small set of random examples. We se-

ected these examples blindly, without specifically looking for ar-

icles which will confirm our concern about the wrong protocol.

ut of the 17 papers we picked, 6 apply the wrong protocol, 4

o not give explicit details to judge either way, and 7 apply the

raining/testing correctly [21–27] . We took our motivation from the

larmingly high proportion of studies oblivious to the overfitting

aveat. These findings make our message even more important be-

ause the comparisons in these studies (not cited for obvious rea-

ons), and the related claims, may be compromised by using a

awed evaluation metric. 

.2. Peaking and peeking 

We should be cautious not to confuse “peeking” with “peaking”.

he “peaking phenomenon”, also called in the past “peak-effect” or

The Hughes paradox” [28–30] is now well documented. The para-

ox is that by discarding information (features), we may obtain a

etter classifier. There are at least two causes for this phenomenon.

irst, the classifier model is never the perfect (Bayes) classifier. If,

ypothetically, we knew the exact probability distributions of the

lasses, all relevant features will be suitably exploited, and all ir-

elevant ones, ignored. There will be no decline in the accuracy

f more features are included, be they relevant or irrelevant. Since

he ideal classifier is only a fiction, a substitute is usually chosen
1 https://doi.org/10.1145/3136625 , https://arxiv.org/abs/1601.07996 . 
2 http://wok.mimas.ac.uk/ . 

p

rom the large toolbox of pattern recognition and machine learn-

ng. For some of these models, irrelevant features may spoil the

erformance (for example, the k-nearest neighbour (k-nn)). Sec-

nd, the fact that the dataset is finite, precludes estimating the

arameters of the classifier to arbitrarily precision. This in itself

ould contribute to the peaking effect. The peak identifies the op-

imal number of features for the chosen classifier model and fea-

ure selection procedure. Note, therefore, that “peeking” is quite

ifferent from “peaking”. “Peeking” is an oversight on the exper-

menter’s part while “peaking” can be described as a data/model

uirk. 

.3. The effect of the small sample size 

Wide datasets with low sample size are typically too small

o allow for a split into training and testing. Take for exam-

le The Great British Medallists Research Project which is an in-

epth study of 32 former GB athletes from Olympic sports 3 Se-

ecting the most important traits and practices may inform fur-

her training and selection decisions for boosting the performances

f elite athletes. The dataset limits come from the fact that there

re simply no more instances to add. Nonetheless, the hold-

ut protocol where relatively small-size data sets are split ran-

omly into a training and a testing part is still used in feature

election [31] . 

The problem of an inadequately small sample size has been

agged in the past [32] . However, here we are interested in ex-

reme cases of very small-size data, which have not been consid-

red before. 

While concerns have been raised before, to the best of our

nowledge, there is no comprehensive experimental study which

learly demonstrates the extent of the problem of overfitting in

eature selection for very low-sample-size data. To illustrate this

oint, we replicated results due to Raunannen, 2003 [15] . The

roblem of the overfitting has been aptly exemplified by a sequen-

ial forward selection (SFS) on the ‘sonar’ data from the UCI repos-

tory [33] (2 classes containing respectively 97 and 111 instances,

nd 60 features). Half of the data was used for training, and the

ther half for testing. The feature selection was carried out through

he leave-one-out cross-validation protocol (LOO) on the training

art of the data. The nearest neighbour classifier (1-nn) was used

s the classifier of choice in the wrapper approach. Thus the ac-

uracy of the classifier with the selected feature subset is directly

he output from the SFS procedure. The “proper” testing accuracy

as subsequently estimated on the testing data for all feature set

izes. Fig. 1 shows the training (LOO) accuracy and the testing clas-

ification accuracy for 10 splits into halves, and the accuracy aver-

ged across the 10 splits. The axes are formatted to match exactly

ig. 1 in the original paper. 

Both curves match the ones in the original paper. We further

arried out experiments where instead of 50% (104 instances), the

raining data contained 20% (42 instances) and 10% (21 instances)

f the data. Again, 10 runs with different random splits into train-

ng and testing were carried out, and the accuracy curves were av-

raged across the 10 runs. Fig. 2 shows the averaged accuracies as

unctions of the cardinality of the feature set. 

To highlight the severity of the problem, we showed the dis-

repancy between predicted and actual accuracy by joining the

orresponding values for 50% split of the data. The figure shows

hat the gap between these accuracies increases dramatically for

maller training sizes considered here. 

Here we examine experimentally the inadequacy of the flawed

rotocol and propose an alternative. 
3 http://ipep.bangor.ac.uk/medalists _ research.php.en . 

https://doi.org/10.1145/3136625
https://arxiv.org/abs/1601.07996
http://wok.mimas.ac.uk/
http://ipep.bangor.ac.uk/medalists_research.php.en
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Fig. 1. Results for the ‘sonar’ data set replicating the SFS illustrative experiment 

of Reunanen, 2003 [15] . The subsets of features were obtained from SFS. The leave- 

one-out accuracy of 1-nn was used as the as the feature subset evaluation criterion. 

Fig. 2. Comparison of accuracies for different sample sizes for the ‘sonar’ data set. 

Small markers show the training (predicted) accuracy, and large markers, the test- 

ing (actual) accuracy of the 1-nn classifier. The subsets of features were obtained 

from SFS. The leave-one-out accuracy of 1-nn was used as the as the feature subset 

evaluation criterion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Diagram of the widely used but incorrect (contaminated) protocol for fea- 

ture selection. Boxes represent inputs and outputs; shaded boxes represent output 

returned to the user; and circles represent procedures. S is the selected subset 

of features; A LOO ( S ) is the classification accuracy predicted through leave-one-out 

cross-validation for the chosen classifier C, and F is the chosen feature selection 

method. 
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3. Methods 

3.1. Feature selection approaches and their applicability to 

small-sample-size data 

While the field abounds with feature selection methods, little

will be suitable for the wide datasets considered here. The way

of traversing the possible candidate subsets of features will be no

different from the ways adopted in the conventional approaches.

However, the criterion for evaluating these subsets must be cho-

sen with caution. Consider the three established approaches: wrap-

per, filter, and embedded selection [34] . In the wrapper approach,

a classifier is trained using the candidate subset of features, and a

discrimination measure (usually the classification accuracy) is sub-

sequently calculated. The filter approach, on the other hand, uses

a proxy for the desired discrimination measure, and avoids train-

ing a classifier. While in the former two approaches the classifier

model is not directly responsible for selecting or ranking the fea-
ures, some classifier models allow for this combined process (em-

edded approach). Examples of such models are the decision tree

lassifier, the linear SVM classifier, and the random forest classifier

nsemble [35] . 

It is universally accepted that wrapper methods give better re-

ults than filter or embedded methods. For wide datasets, however,

he drawbacks of the wrapper approach are amplified into major

aws. The first flaw is the lack of fidelity. In a dataset with N ob-

ects, a leave-one-out ( N -fold) cross-validation will give only N + 1

ossible distinct values for the accuracy. The feature sets of inter-

st will likely take an even more limited set of values correspond-

ng to the higher spectrum of the accuracies. Thus, they may not

e distinguishable from one another or from other, less valuable,

eature sets. The second flaw is the increased risk of overfitting

ompared to the filter or the embedded approach. Thus, we pro-

ose to use the state-ot-the-art filter and embedded methods for

valuating the candidate subsets for extreme wide datasets. In the

xperiments further on, we apply the Fast Correlation-Based Filter

FCBF) [6] , ReliefF [36,37] , and the Symmetrical Uncertainty [38] . 

.2. The right and the wrong protocols 

Here we argue the main point of this study. A remarkably large

umber of studies in feature selection, including some quite influ-

ntial ones, use a flawed (contaminated) protocol, which openly or

ubtly includes peeking. This protocol is illustrated in Fig. 3 . First,

he feature selector F is applied to the data, and a set of features

 is selected. Next, classifier models C are evaluated on the same

ata, possibly using cross-validation, and the best classifier is re-

urned to the user along with the estimate of the classification ac-

uracy from the cross-validation experiment, A LOO . 

The caveat here is that the dataset is used twice: once for find-

ng S through F , and once for evaluating C. Thus the classifier’s

esting data have already been used for selecting S . Hence, a pos-

tive bias can be expected due to this “peeking”. How can this

e done without peeking? Fig. 4 shows one possible answer in

he form of a non-contaminated protocol, which will be called the

proper” protocol. 

In the proper protocol, the cross-validation loop includes the

eature selector F . A feature set (or ranking) S i is obtained for each

ross-validation fold using the respective training data. Then the

hosen classifier C(S i ) is trained on the same training data using

he selected features. Finally the testing data for the fold is used

o evaluate the accuracy of C(S i ) . By averaging the accuracies for

he cross-validation folds, we obtain one final value, A PRO , which

stimates the accuracy of the whole process (feature selection fol-

owed by classification). At no point in this training process is the

esting data seen by the feature selector or classifier. At the end,

he output returned to the user is the feature set S obtained from

he whole dataset through F . Interestingly, in most cases, this is

he same set obtained from the wrong protocol. The difference is

n the classification accuracy which accompanies this set. Our hy-

othesis is that, due to the peeking, A is optimistically biased,
LOO 
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Fig. 4. Diagram of the “proper” protocol for feature selection. Boxes represent in- 

puts and outputs; shaded boxes represent output returned to the user; and circles 

represent procedures. S is the selected subset of features; A PRO ( S ) is the classification 

accuracy predicted through leave-one-out cross-validation for the chosen classifier 

C, and F is the chosen feature selection method. 

Fig. 5. An example of the optimistic bias of the wrong feature selection protocol 

using the arrhythmia data from UCI. 
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4 The repository is available at http://featureselection.asu.edu/datasets.php . 
nd therefore misleading, while A PRO is closer to the true accuracy,

hich can be estimated from a previously unseen testing set. 

.3. An example of the optimistic bias of the wrong protocol 

Fig. 5 shows an example of the above argument. We chose the

rrhythmia dataset from the UCI repository [33] . The data contains

79 features (attributes) and 452 objects (instances). We grouped

he class labels into two classes: (1) normal (207 objects, 45.8%)

nd (2) arrhythmia (245 objects, 54.2%). Extreme wide datasets

ere sampled 100 times, with 10 objects in each class. We chose

he ReliefF feature ranker as F , and the linear discriminant clas-

ifier (LDC) with a diagonal covariance matrix and uniform priors

s C. A feature ranking was obtained for each of the 100 runs. The

ncorrect protocol illustrated in Fig. 3 was applied to derive the

redicted accuracy A LOO ( S ) for feature subsets of increasing cardi-

ality, labelled ‘LOO’ in the figure. In this example, we set the max-
mum cardinality to 40% of the cardinality of the feature set. The

proper” protocol was applied as well, giving accuracy A PRO , which

s labelled as ‘Proper’ in the figure. 

The accuracy of C trained on the whole wide dataset of 20 ob-

ects, A T (labelled ‘Test’ in the figure), was evaluated using the re-

aining 432 objects left aside for testing. We treat this value as

he desired quantity, which A LOO and A PRO strive to approximate.

or comparison, for every run, we calculated the accuracy of a ran-

om permutation of the features instead of the ranking offered by

. As there is no selection method to cross-validate in the random

pproach, the “wrong” and the “proper” protocols both amount to 

valuating the LOO accuracy using the training data, denoted R LOO ,

nd labelled as ‘Random LOO’ in the figure. Again, we subsequently

alculated the quantity which R LOO attempts to predict by evaluat-

ng a C trained on the whole training data (with the respective

andom subset of features) using the testing part of the data. This

alue, R T , is labelled in the figure as ‘Random Test’. 

The graph shows exactly where the problem lies. We have

haded the gap between A LOO and A T in blue, and the gap be-

ween A PRO and A T in red. Clearly, A LOO is heavily optimistically bi-

sed, whereas A PRO is a lot closer to A T . The large optimistic bias

s caused by using the wrong protocol (peeking), which, unfortu-

ately, is the standard practice in many studies, even very highly

alued ones. However, A PRO is not a perfect solution to this prob-

em either. There is a visible pessimistic bias of A PRO . One possible

eason for this bias is that when we evaluate C in Part 1 of the

ight protocol in Fig. 4 , the classifier is built on N − 1 objects, and

or the testing accuracy, we build the classifier on all N objects.

iven that N is quite small, the difference of one object is notice-

ble, even for a stable classifier models as LDC. Still, we argue that

his bias is smaller than the bias of A LOO , and is better suited as a

uarantee returned to the user. 

The random curves, expectedly, run under the curves using a

roper feature selector, showing lower classification accuracy. The

rgument why R LOO is worse than R T is the same as above. To ob-

ain R LOO , we train C on N − 1 objects, and for R T , on N objects. 

The classification accuracy as a function of the number of fea-

ures will not behave in the same way for all classifiers. There

ould be idiosyncratic pockets of features which perform excel-

ently for a specific classifier and are largely overlooked by most

ther classifiers. The peak-effect may be strongly or less strongly

ronounced depending on the classifier. The same argument holds

or the feature selection method F . There could be “lucky pairings”

etween F and C for the dataset of interest, giving high accuracy

ith fewer features, but this cannot be known in advance. 

. Experimental study 

The purpose of the experiment is to verify our hypothesis that

he proper feature selection protocol gives a closer estimate of the

esting accuracy than the widely used contaminated protocol. In

ddition, we will seek to answer the following questions: 

1) Does the protocol choice have the same impact over different

feature selection methods? 

2) Does the protocol choice have the same impact over different

classifier models? 

.1. Data 

The characteristics of the 24 datasets used here are presented

n Table 1 . They were taken from the repository 4 [20] . Some of the

atasets within the collection are from the UCI Machine Learning

epository [33] . 

http://featureselection.asu.edu/datasets.php
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Table 1 

Characteristics of the high-dimensional datasets. 

Dataset Instances Features Classes 

ALLAML 72 7129 2 

arcene 200 10,0 0 0 2 

BASEHOCK 1993 4862 2 

Carcinom 174 9182 11 

CLL_SUB_111 111 11,340 3 

COIL20 1440 1024 20 

colon 62 20 0 0 2 

gisette 70 0 0 50 0 0 2 

GLI_85 85 22,283 2 

GLIOMA 50 4434 4 

Isolet 1560 617 26 

leukemia 72 7070 2 

lung 203 3312 5 

lymphoma 96 4026 9 

madelon 2600 500 2 

PCMAC 1943 3289 2 

Prostate_GE 102 5966 2 

RELATHE 1427 4322 2 

SMK_CAN_187 187 19,993 2 

TOX_171 171 5748 4 

USPS 9298 256 10 

warpAR10P 130 2400 10 

warpPIE10P 210 2420 10 

Yale 165 1024 15 
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4.2. Feature selectors and classifiers 

The experiments for this part of the study were carried out in

Weka [39] . We experimented with the following choices of fea-

ture selection methods F and classifier models C implemented in

Weka: 

Symmetrical Uncertainty [38] (SU) is a measure of correlation

between two nominal features based on their individual and joint

entropies. When one of the two features is the class variable, we

have a measure of the worth of the paired feature. This mea-

sure can be used for ranking the features. It does not take into

account any interaction between them. To apply this measure to

continuous-valued features, they are first discretised. 

Fast correlation-based filter (FCBF) [6] also uses SU. Unlike SU,

however, it takes into account the correlation between the fea-

tures. The method aims at selecting features which have high cor-

relation with the class variable and low correlation among them-

selves. 

ReliefF [37] , a variant of Relief [36] , is an instance-based fea-

ture ranking method. A subset of the instances is randomly se-

lected multiple times and the feature weights are updated based

on the proximity of the instances from the same classes in the se-

lected sample. 

The classifiers used were: the nearest neighbour (1-NN), the

decision tree classifier (J48) [40] , the linear discriminant classifier

(LDC), 5 the naïve Bayes classifier (NB) and the Random Forest clas-

sifier ensemble (RF) [41] . 

4.3. Calculation of the criteria values 

We carried out 10 runs for each data set. For FCBF, the

number of features was determined within the algorithm. For

the ranker methods, the number of features was varied as

{ 1 , 2 , . . . , 9 , 10 , 15 , 20 , . . . 100 } . In each run, the dataset was ran-

domly split into a training part of 10 × c instances for training,

and the remaining instances for testing, where c is the number of

classes. Denote the training part (10 instances per class) by D train ,

and the testing part by D test . For a chosen feature selection method
5 pseudo-linear LDA is implemented in Weka. 

n  

o  

s

and a chosen classifier model C (for a fixed number of features

r number determined by F), we calculated the following criteria

f interest: 

• A LOO . Apply F on D train to obtain feature set S . Denote by

D train (S) the restriction of D train on the feature subspace S . Eval-

uate C on D train (S) using leave-one-out cross-validation. This

accuracy is A LOO . 
• A PRO . Organise a leave-one-out loop on D train . For each training

fold, i , apply F (with or without cross-validation) to obtain fea-

ture set S i . Test C using S i on the remaining testing instance.

The averaged accuracy on the testing instances is A PRO . 
• A T . Apply F on D train (with or without cross-validation) to ob-

tain feature set S . (This is the same step as in calculating A LOO .)

Evaluate C on D test (S) . This accuracy is A T . 

.4. Protocol and results 

To enable statistical analyses, we need to determine a suitable

umber of features for the rankers. We tried two approaches: 

• Maximum. For each run, identify the maximum of the curve

A LOO and store the smallest number for which this maximum

is achieved, N M 

. In the same way, determine N 

′ 
M 

, for which the

curve of the proper protocol peaks. 
• Parabola. Assuming that there is a peak effect as described

in Section 2 , we fit a parabola y = ax 2 + bx + c (through least

squares) to A LOO and A PRO . If the parabola is convex ( a < 0), we

return the position of the maximum N P = − b 
2 a (similarly for

N 

′ 
P 
). If the parabola is concave, the Maximum method above is

applied to determine N P ( N 

′ 
P ). 

In this way, we may have different feature sets and different

ardinalities by LOO and Proper. Denote by A 

Y 
X the accuracy A X 

easured for a feature set of cardinality Y . If our hypothesis is cor-

ect, A 

N ′ 
PRO 

will be closer to A 

N ′ 
T 

than A 

N 
LOO 

is to A 

N 
T 

. In other words,

e would expect the following inequality to hold: 

 A 

N ′ 
PRO − A 

N ′ 
T | < | A 

N 
LOO − A 

N 
T | . (1)

Tables 2–6 show the results for the individual data sets,

nd the feature selection methods: FCBF, ReliefF/Maximum, Re-

iefF/Parabola, Symmetric Uncertainty/Maximum, and Symmetric

ncertainty/Parabola. We show the classification accuracies A LOO ,

 PRO , and the respective A T , averaged across the 10 runs and the

 classifiers. Given in the tables are also the averaged cardinal-

ty of the selected feature subset, | S |, for each dataset. We denote

he difference of interest by �X = A X − A T , where X stands for LOO

r PRO . The columns with the differences are shown in boldface

n the table. For each dataset, the smaller one of the two differ-

nces � – by absolute value – is shown in a box. Since the val-

es of the classification accuracies are not commensurable across

atasets, nor are the differences thereof, only the sign rank statis-

ical test is applicable. The p-values from the sign test comparing

he paired values of | �| are given in the respective table ∗ caption.

or all feature selection methods, we found significant difference

t level 0.01. This supports our hypothesis that the proper protocol

ives closer estimates of the true accuracy compared to the peek-

ng protocol for very small-size data. 

Next we ran the sign test for the paired observations separately

or each classifier and feature selection method. Each test was cal-

ulated from 240 pairs of values (24 data sets, 10 runs). We ran the

ight-tailed sign test with null hypothesis: | A PRO − A T | ≥ | A LOO − A T |
LOO is equivalent or better than the proper protocol). All p-values,

ith one exception, were under 0.0 0 0 05, strongly rejecting the

ull hypothesis, thereby landing further support to our claim. The

nly relatively larger p-value of 0.0274, still under 0.05, was ob-

erved for the FCBF feature selector and the J48 classifier. 
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Fig. 6. Scatteplot of | A LOO − A T | versus | A PRO − A T | the five classifier models. Each point on the plot comes from one run, a given feature selection method and the classifier 

specified in the title of the sub-figure. W/D/L mean win/draw/loss, where W is the percentage of points where (1) holds. 
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Fig. 7. Scatterplot of A LOO and A PRO versus A T . A dot marker represents ( A T , A LOO ) for 

a given data set, and a triangle marker, ( A T , A PRO ). The markers for the same data 

sets are joined by an arrow from LOO to PRO. 
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To examine further the effect of the classifier model on the

differences between the predicted and true accuracy, we plot in

Fig. 6 | A LOO − A T | versus | A PRO − A T | for the five classifier models.

Each point on the plot comes from one run, a given feature se-

lection method and the classifier specified in the title of the sub-

figure. Thus, each plot contains 24 datasets × 10 runs × 5 feature

selection methods/variants = 1200 points. Out of these, we cal-

culated the percentage where | A LOO − A T | > | A PRO − A T | , support-

ing our hypothesis, shown as “win” (W) in the title of the sub-

figure. All such points are above the diagonal line of the square.

We also show in the title the percentage of draws (D), where

| A LOO − A T | = | A PRO − A T | , and the percentage of losses (L), where

| A LOO − A T | < | A PRO − A T | . It sign test is applied to any of the data

subsets in the 5 sub-figures, the hypothesis in Eq. (1) is strongly

supported. 

Finally, we illustrate the reduction of optimistic bias when us-

ing the correct protocol in Fig. 7 . We chose one example of feature

selection method (ReliefF/Max) and classifier (Random Forest) but

we note that all such plots look similar. A LOO , A PRO and the respec-

tive A T are averaged across the 10 runs for each data set. A dot
arker represents ( A T , A LOO ) for a given data set, and a triangle

arker, represents ( A T , A PRO ). The markers for the same data sets

re joined by an arrow from LOO to PRO. The downward tendency

f the arrows shows the reduction of the optimistic bias by apply-

ng the correct protocol. 

In summary, we confirm that using the proper protocol for fea-

ure selection from very wide datasets gives more truthful results

ompared to the currently favoured protocol, which we termed

ere “the wrong” protocol or the “contaminated” protocol. Our re-

ults also suggest that the bias is likely universally present across

any feature selection methods and classifier models. 

. Conclusions 

This paper demonstrates the importance of applying a clean

non-contaminated) protocol for feature selection for wide datasets

ith a very low sample size. While the set of features returned to

he user may be the same from both protocols, the estimate of the

lassification accuracy, which must be returned too, will likely be

isleading if the wrong protocol is used. Running an experimen-

al study with 24 datasets, we found statistically significant differ-

nces between the biases of the wrong and the proper protocols

or all classifier models and feature selection methods we tested. 

Based on these results, we recommend using the proper proto-

ol ( Fig. 4 ) instead of the popular alternative ( Fig. 3 ). 

Further on, the ranker methods, which are suitable for this type

f data, need additional analysis for choosing the cardinality of

he feature set to be returned. We examined two simple variants:

aximum and parabola, and found that the conclusions applied to

oth. As a future line of research, we are planning to investigate

ther methods for determining the cardinality of the best feature

ubset using a stability index [42,43] . Ensembles of ranker methods

re also a good way forward [44] for very small-size data. In ad-

ition to a more stable ranking, they offer further possibilities to

se stability for obtaining the cardinality of the returned feature

ubset. Most importantly, one should seek to increase the sample

ize. 
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A
ppendix 
Table 2 

FCBF feature selection method. Classification accuracies A LOO , A PRO , and the respective A T , av- 

eraged across the 10 runs and the 5 classifiers. | S | is the averaged cardinality of the selected 

feature subset. �X = A X − A T , where X stands for LOO or PRO . The columns with the differ- 

ences are shown in boldface. For each dataset, the smaller one of the two differences � – by 

absolute value – is shown in a box. The p -value of the sign test for equivalence of �LOO and 

�PRO is 0.0066. 

Dataset | S | A LOO A T �LOO | S | A PRO A T �PRO 

ALLAML (2.0) 92.3 80.2 12.1 (2.0) 80.2 80.2 -0.0 

BASEHOCK (5.8) 77.6 65.0 12.6 (5.8) 57.2 65.0 -7.8 

CLL_SUB_111 (44.6) 88.3 55.6 32.7 (44.6) 66.5 55.6 10.9 

COIL20 (101.4) 84.1 85.0 -0.9 (101.4) 83.0 85.0 −2.0 

Carcinom (192.7) 88.7 86.8 2.0 (192.7) 81.6 86.8 −5.2 

GLIOMA (37.3) 87.7 67.5 20.2 (37.3) 68.1 67.5 0.6 

GLI_85 (2.0) 94.9 70.6 24.3 (2.0) 65.9 70.6 -4.7 

Isolet (17.0) 68.2 67.5 0.7 (17.0) 64.9 67.5 −2.7 

PCMAC (4.8) 71.4 57.6 13.8 (4.8) 50.9 57.6 -6.7 

Prostate_GE (4.6) 95.1 78.3 16.8 (4.6) 77.8 78.3 -0.5 

RELATHE (6.5) 80.6 54.2 26.4 (6.5) 55.7 54.2 1.5 

SMK_CAN_187 (13.3) 86.8 54.0 32.8 (13.3) 60.3 54.0 6.3 

TOX_171 (40.1) 77.5 54.2 23.3 (40.1) 52.8 54.2 -1.5 

USPS (17.6) 71.1 73.0 -1.9 (17.6) 68.2 73.0 −4.7 

Yale (18.2) 63.3 56.7 6.6 (18.2) 58.6 56.7 2.0 

arcene (21.5) 84.3 54.7 29.6 (21.5) 51.3 54.7 -3.4 

colon (12.8) 86.1 62.6 23.5 (12.8) 65.8 62.6 3.2 

gisette (17.0) 91.0 70.5 20.5 (17.0) 67.5 70.5 -3.0 

leukemia (8.0) 96.2 87.2 9.0 (8.0) 79.2 87.2 -8.0 

lung (68.6) 93.9 84.8 9.1 (68.6) 87.0 84.8 2.2 

lymphoma (46.6) 97.9 91.5 6.4 (46.6) 90.0 91.5 -1.5 

madelon (8.6) 81.1 49.7 31.4 (8.6) 35.2 49.7 -14.5 

warpAR10P (23.4) 81.5 80.5 1.1 (23.4) 75.4 80.5 −5.0 

warpPIE10P (48.5) 92.5 91.3 1.2 (48.5) 90.7 91.3 -0.6 
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Table 3 

ReliefF feature selection method, MAXIMUM version. Classification accuracies A LOO , A PRO , and 

the respective A T , averaged across the 10 runs and the 5 classifiers. | S | is the averaged car- 

dinality of the selected feature subset. �X = A X − A T , where X stands for LOO or PRO . The 

columns with the differences are shown in boldface. For each dataset, the smaller one of 

the two differences � – by absolute value – is shown in a box. The p -value of the sign test 

for equivalence of �LOO and �PRO is 0.0015. 

Dataset | S | A LOO A T �LOO | S | A PRO A T �PRO 

ALLAML (15.2) 97.6 86.9 10.7 (19.2) 93.9 87.5 6.4 

BASEHOCK (21.6) 87.2 62.5 24.7 (8.2) 69.3 60.3 9.0 

CLL_SUB_111 (30.0) 84.1 52.1 32.0 (22.3) 78.1 51.1 27.1 

COIL20 (92.5) 72.1 73.0 -0.9 (87.7) 70.9 72.2 −1.3 

Carcinom (69.5) 85.3 82.7 2.6 (69.3) 80.8 82.6 -1.8 

GLIOMA (35.7) 87.5 69.1 18.5 (27.3) 80.5 68.2 12.4 

GLI_85 (7.7) 96.9 75.1 21.8 (19.7) 86.6 77.0 9.6 

Isolet (89.4) 67.4 67.4 -0.0 (90.1) 66.9 67.3 −0.4 

PCMAC (20.0) 88.4 59.6 28.8 (15.0) 65.0 58.1 6.9 

Prostate_GE (16.5) 96.5 79.6 16.9 (12.4) 89.9 80.6 9.3 

RELATHE (17.0) 88.8 54.3 34.5 (29.3) 64.1 54.4 9.7 

SMK_CAN_187 (13.6) 93.9 57.6 36.3 (18.0) 72.6 56.7 15.9 

TOX_171 (43.2) 79.8 56.2 23.6 (51.2) 65.8 57.8 8.0 

USPS (67.0) 72.6 72.0 0.6 (66.1) 70.5 71.9 −1.4 

Yale (68.4) 63.2 59.7 3.5 (70.0) 60.4 60.8 -0.4 

arcene (19.1) 90.8 58.0 32.8 (26.0) 69.3 56.7 12.6 

colon (7.9) 90.8 62.8 28.0 (11.7) 75.5 64.3 11.2 

gisette (15.4) 95.0 72.9 22.1 (24.6) 83.0 74.1 8.9 

leukemia (12.5) 99.2 89.8 9.4 (15.8) 95.8 89.7 6.1 

lung (44.9) 92.8 81.2 11.5 (57.0) 89.7 82.5 7.2 

lymphoma (16.6) 99.1 77.5 21.6 (39.3) 94.7 77.8 16.9 

madelon (27.8) 93.5 50.8 42.7 (18.9) 66.4 50.1 16.3 

warpAR10P (62.9) 77.6 77.4 0.2 (60.2) 76.2 76.5 −0.2 

warpPIE10P (54.9) 89.9 84.9 4.9 (51.9) 87.8 85.3 2.6 
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Table 4 

ReliefF feature selection method, PARABOLA version. Classification accuracies A LOO , A PRO , and 

the respective A T , averaged across the 10 runs and the 5 classifiers. | S | is the averaged car- 

dinality of the selected feature subset. �X = A X − A T , where X stands for LOO or PRO . The 

columns with the differences are shown in boldface. For each dataset, the smaller one of 

the two differences � – by absolute value – is shown in a box. The p -value of the sign test 

for equivalence of �LOO and �PRO is 0.0 0 03. 

Dataset | S | A LOO A T �LOO | S | A PRO A T �PRO 

ALLAML (43.5) 96.9 90.0 6.9 (47.5) 95.9 89.5 6.4 

BASEHOCK (33.8) 84.7 63.6 21.1 (15.4) 73.6 61.1 12.5 

CLL_SUB_111 (47.9) 79.1 51.9 27.2 (41.0) 76.7 51.1 25.5 

COIL20 (85.6) 69.6 71.6 −2.0 (85.6) 69.7 71.7 -2.0 

Carcinom (67.1) 79.8 81.7 -1.9 (71.8) 79.3 81.5 −2.2 

GLIOMA (60.4) 81.7 68.0 13.7 (53.8) 81.9 68.2 13.8 

GLI_85 (32.9) 96.3 78.1 18.2 (40.8) 91.0 77.5 13.5 

Isolet (86.7) 65.4 66.9 −1.5 (88.8) 65.7 67.1 -1.4 

PCMAC (39.1) 84.2 59.7 24.5 (26.3) 72.0 58.2 13.8 

Prostate_GE (31.5) 95.1 80.4 14.7 (30.7) 90.1 80.0 10.1 

RELATHE (34.3) 84.5 54.0 30.5 (37.9) 68.9 54.6 14.3 

SMK_CAN_187 (31.9) 91.6 58.2 33.4 (32.9) 78.7 56.5 22.2 

TOX_171 (60.3) 73.0 57.1 15.9 (66.3) 70.3 59.0 11.3 

USPS (76.6) 69.2 72.1 -2.9 (77.6) 69.1 72.1 −3.0 

Yale (66.2) 59.2 61.3 −2.1 (72.4) 59.4 61.3 -1.9 

arcene (37.8) 88.4 58.2 30.2 (38.2) 77.5 57.0 20.5 

colon (17.7) 88.8 63.2 25.6 (23.7) 78.2 64.1 14.1 

gisette (32.8) 93.9 74.2 19.7 (31.9) 84.0 74.0 10.0 

leukemia (25.2) 99.0 90.0 9.0 (28.6) 96.4 90.2 6.2 

lung (71.2) 89.0 84.8 4.3 (75.2) 88.7 85.8 2.8 

lymphoma (56.1) 98.5 83.2 15.3 (64.9) 97.0 83.8 13.2 

madelon (51.6) 90.9 50.8 40.1 (27.3) 74.3 50.0 24.3 

warpAR10P (67.2) 75.1 77.3 −2.1 (69.8) 75.4 77.5 -2.0 

warpPIE10P (58.1) 87.5 85.2 2.3 (59.0) 87.3 85.6 1.7 
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Table 5 

Symmetrical Uncertainty feature selection method, MAXIMUM version. Classification accu- 

racies A LOO , A PRO , and the respective A T , averaged across the 10 runs and the 5 classifiers. | S | 

is the averaged cardinality of the selected feature subset. �X = A X − A T , where X stands for 

LOO or PRO . The columns with the differences are shown in boldface. For each dataset, the 

smaller one of the two differences � – by absolute value – is shown in a box. The p -value 

of the sign test for equivalence of �LOO and �PRO is 0.0 0 03. 

Dataset | S | A LOO A T �LOO | S | A PRO A T �PRO 

ALLAML (9.6) 98.6 85.5 13.1 (21.8) 92.6 87.0 5.6 

BASEHOCK (8.7) 84.1 64.9 19.2 (13.4) 70.1 63.2 6.9 

CLL_SUB_111 (18.8) 87.1 53.3 33.7 (28.0) 75.7 54.2 21.5 

COIL20 (81.9) 79.0 79.2 -0.2 (83.7) 77.8 79.1 −1.3 

Carcinom (56.4) 88.0 85.2 2.8 (61.9) 82.5 85.0 -2.5 

GLIOMA (28.5) 89.3 63.8 25.4 (34.9) 80.3 65.8 14.4 

GLI_85 (3.2) 98.8 72.4 26.4 (22.9) 83.8 75.2 8.6 

Isolet (86.6) 68.6 68.4 0.2 (86.7) 67.8 68.4 −0.6 

PCMAC (10.9) 80.4 59.2 21.2 (5.1) 69.0 60.7 8.3 

Prostate_GE (6.0) 98.5 81.2 17.3 (18.0) 89.4 81.7 7.7 

RELATHE (13.2) 87.6 52.9 34.7 (9.7) 67.0 53.0 14.0 

SMK_CAN_187 (12.4) 95.6 55.3 40.3 (9.9) 73.8 55.4 18.4 

TOX_171 (37.7) 80.3 55.8 24.5 (44.3) 66.0 55.3 10.7 

USPS (76.4) 65.5 65.4 0.1 (77.4) 63.4 65.1 −1.7 

Yale (49.0) 67.6 61.3 6.2 (51.4) 63.7 59.1 4.7 

arcene (17.2) 93.8 56.1 37.7 (24.1) 67.4 56.3 11.1 

colon (7.1) 92.3 63.2 29.1 (25.3) 74.7 61.3 13.4 

gisette (20.6) 96.1 74.2 21.9 (24.4) 82.2 73.9 8.3 

leukemia (6.5) 99.4 87.7 11.7 (17.6) 92.8 90.1 2.7 

lung (38.6) 95.8 81.2 14.6 (51.1) 90.0 81.9 8.2 

lymphoma (23.2) 99.5 80.0 19.5 (45.3) 93.8 82.3 11.5 

madelon (15.1) 92.0 50.1 41.9 (22.9) 59.8 50.1 9.7 

warpAR10P (64.5) 78.9 77.3 1.6 (61.6) 76.8 77.6 -0.8 

warpPIE10P (68.2) 90.3 87.2 3.0 (69.4) 88.9 86.7 2.2 
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Table 6 

Symmetrical Uncertainty feature selection method, PARABOLA version. Classification accura- 

cies A LOO , A PRO , and the respective A T , averaged across the 10 runs and the 5 classifiers. | S | 

is the averaged cardinality of the selected feature subset. �X = A X − A T , where X stands for 

LOO or PRO . The columns with the differences are shown in boldface. For each dataset, the 

smaller one of the two differences � – by absolute value – is shown in a box. The p -value 

of the sign test for equivalence of �LOO and �PRO is 0.0015. 

Dataset | S | A LOO A T �LOO | S | A PRO A T �PRO 

ALLAML (32.2) 98.2 87.5 10.7 (48.2) 93.9 87.7 6.2 

BASEHOCK (28.0) 81.3 64.6 16.7 (33.8) 76.1 64.4 11.7 

CLL_SUB_111 (22.3) 85.4 53.5 31.9 (49.6) 75.9 54.9 21.0 

COIL20 (73.4) 76.7 78.3 -1.6 (72.9) 76.3 78.4 −2.1 

Carcinom (62.0) 85.3 85.6 -0.3 (67.2) 84.4 85.8 −1.5 

GLIOMA (39.9) 85.7 66.8 18.9 (52.0) 82.7 69.1 13.7 

GLI_85 (15.0) 98.7 75.6 23.1 (30.5) 86.4 75.5 10.9 

Isolet (90.3) 67.0 68.2 -1.2 (92.6) 67.1 68.4 −1.3 

PCMAC (25.2) 79.0 59.1 19.9 (14.1) 71.7 60.6 11.1 

Prostate_GE (18.5) 97.3 81.1 16.2 (38.6) 91.6 81.7 9.9 

RELATHE (28.4) 84.1 53.4 30.7 (34.3) 76.5 52.9 23.6 

SMK_CAN_187 (20.7) 94.7 55.8 38.9 (14.9) 78.1 55.7 22.4 

TOX_171 (60.1) 75.1 58.0 17.1 (63.4) 71.2 57.8 13.4 

USPS (83.1) 62.9 65.1 -2.1 (85.5) 62.6 65.2 −2.6 

Yale (56.9) 63.6 61.1 2.5 (56.8) 63.8 61.3 2.4 

arcene (33.5) 91.9 57.4 34.5 (41.4) 76.6 57.2 19.4 

colon (14.7) 90.8 62.0 28.8 (41.0) 79.3 61.6 17.7 

gisette (33.2) 95.0 74.6 20.4 (34.8) 84.2 73.8 10.4 

leukemia (19.4) 99.2 88.6 10.6 (36.2) 94.5 90.5 4.0 

lung (61.8) 94.0 82.8 11.1 (70.4) 91.8 83.2 8.6 

lymphoma (59.0) 98.2 85.6 12.6 (69.0) 97.5 85.5 12.0 

madelon (21.1) 85.9 50.4 35.5 (35.7) 69.2 50.1 19.1 

warpAR10P (60.6) 76.3 78.7 −2.4 (63.0) 76.6 78.5 -1.9 

warpPIE10P (67.7) 88.3 87.0 1.3 (68.3) 88.0 87.1 0.9 
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