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ABSTRACT

High-dimensional data with very few instances are typical in many application domains. Selecting a
highly discriminative subset of the original features is often the main interest of the end user. The widely-
used feature selection protocol for such type of data consists of two steps. First, features are selected
from the data (possibly through cross-validation), and, second, a cross-validation protocol is applied to
test a classifier using the selected features. The selected feature set and the testing accuracy are then
returned to the user. For the lack of a better option, the same low-sample-size dataset is used in both
steps. Questioning the validity of this protocol, we carried out an experiment using 24 high-dimensional
datasets, three feature selection methods and five classifier models. We found that the accuracy returned
by the above protocol is heavily biased, and therefore propose an alternative protocol which avoids the
contamination by including both steps in a single cross-validation loop. Statistical tests verify that the
classification accuracy returned by the proper protocol is significantly closer to the true accuracy (esti-

mated from an independent testing set) compared to that returned by the currently favoured protocol.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Selecting a feature subset of low cardinality and high discrim-
ination power has been a centre-stage quest since the dawn of
pattern recognition [1-4]. Feature selection from high-dimensional
data has been extensively studied [5-12]. In many cases, fea-
ture selection is sought as the end goal of the data analysis.
For example, the user may wish to know which combination
of genes out of several thousand genes forms a distinctive sig-
nature for a particular disorder [13]. In neuroscience, the user
may be interested in the multi-voxel patterns of brain activa-
tion which discriminate between different cognitive states. Find-
ing such multi-voxel patterns can be cast as a feature selection
problem [14].

Wide datasets are characterised by a large number of features
(high dimensionality) and a small number of objects. Such wide
datasets are common in many areas, examples of which are neu-
roimaging, bioinformatics, psychology, and sport sciences. What if
the available sample has only a couple of dozens examples? This
may happen when data does not exist in abundance, for exam-
ple, studies of rare diseases or extraordinary athletes. Sometimes
collecting of such data is prohibitively expensive or destructive.
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How reliable are any conclusions drawn from such datasets? In
particular, how meaningful is feature selection? Ultimately, we can
offer the user a subset of the original features, together with a
trained classifier model, and an estimate of the classification ac-
curacy. The classification accuracy in itself is a gauge of how good
the returned feature set is. Here we argue that, quite often, we
are misleading the user by returning to them an optimistically bi-
ased estimate of the classification accuracy. One reason for this
bias is the so called “peeking phenomenon”, which has already
been brought to the attention of the community [15,16], especially
in the light of experimenting with high-dimensional data [17,18].
The “peeking” happens if the data for testing the model is seen
during some part of the training. Peeking usually happens when
there is a preliminary training stage, for example data quantisa-
tion, feature selection, or parameter tuning. The effect is that the
estimate of the classification accuracy which we return to the user
may be optimistically biased. More importantly, the returned fea-
ture set may also be an artefact rather than a highly discriminative
set.

While the caution of overfitting in feature selection has been
raised several times over the past years [15,16], it does not seem
to have been properly addressed by the larger community, and
especially in applications which are most vulnerable. Curiously, a
comprehensive recent survey by Li et al. [19] does not even men-
tion the issue, while another one considers only the training data
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for feature selection [20].! Instead, these studies review elaborate
methods for stable, sparse, and multi-source feature selection from
wide data. All these developments critically depend on using the
correct training/testing protocol, and may not be adequate at all
for very small sample size data. The difficulty in offering a sta-
ble and unbiased estimate of the classification accuracy may ren-
der the selected feature subsets no better than chance. In addi-
tion to joining the appeal for clean, non-contaminated feature se-
lection protocols, here we set out to address two further issues.
First, we demonstrate the deficiency of the widely used (flawed)
protocol using 24 high-dimensional datasets, three feature selec-
tion methods and 5 classifiers. Second, we propose a clean pro-
tocol and show that its accuracy matches significantly closer the
accuracy estimated from a properly sized datasets. The rest of
the paper is organised as follows. Related work is presented in
Section 2. Section 3 discusses the right and the wrong protocol
for feature selection, and gives an example of the optimistic bias
which the wrong protocol is prone to. Section 4 reports and dis-
cusses our experimental results, followed by our recommendations
in Section 5.

2. Related work
2.1. Many studies are unaware of the overfitting caveat

Smialowski et al. [16] and Reunanen [15] warn about the op-
timistic bias of an improperly applied feature selection protocol,
and emphasise the importance of using testing data unseen at any
part of the feature selection and the classifier training. In spite of
this warning, “peeking” is still widely present, casting doubts in
the findings of the respective studies. Sometimes it is not clear
whether the training/testing protocol has been applied only to
testing the classifier or to the feature-selection-classifier-training
together. A keyword search for the joint term ‘feature selection’
on Web-of-Science,? carried out on the 11 January 2018 returns
over 2300 articles since 2017. A thorough systematic analysis of
these publications in the light of our research question is infea-
sible, hence we opted for a small set of random examples. We se-
lected these examples blindly, without specifically looking for ar-
ticles which will confirm our concern about the wrong protocol.
Out of the 17 papers we picked, 6 apply the wrong protocol, 4
do not give explicit details to judge either way, and 7 apply the
training/testing correctly [21-27]. We took our motivation from the
alarmingly high proportion of studies oblivious to the overfitting
caveat. These findings make our message even more important be-
cause the comparisons in these studies (not cited for obvious rea-
sons), and the related claims, may be compromised by using a
flawed evaluation metric.

2.2. Peaking and peeking

We should be cautious not to confuse “peeking” with “peaking”.
The “peaking phenomenon”, also called in the past “peak-effect” or
“The Hughes paradox” [28-30] is now well documented. The para-
dox is that by discarding information (features), we may obtain a
better classifier. There are at least two causes for this phenomenon.
First, the classifier model is never the perfect (Bayes) classifier. If,
hypothetically, we knew the exact probability distributions of the
classes, all relevant features will be suitably exploited, and all ir-
relevant ones, ignored. There will be no decline in the accuracy
if more features are included, be they relevant or irrelevant. Since
the ideal classifier is only a fiction, a substitute is usually chosen

T https://doi.org/10.1145/3136625, https://arxiv.org/abs/1601.07996.
2 http://wok.mimas.ac.uk/.

from the large toolbox of pattern recognition and machine learn-
ing. For some of these models, irrelevant features may spoil the
performance (for example, the k-nearest neighbour (k-nn)). Sec-
ond, the fact that the dataset is finite, precludes estimating the
parameters of the classifier to arbitrarily precision. This in itself
could contribute to the peaking effect. The peak identifies the op-
timal number of features for the chosen classifier model and fea-
ture selection procedure. Note, therefore, that “peeking” is quite
different from “peaking”. “Peeking” is an oversight on the exper-
imenter’s part while “peaking” can be described as a data/model
quirk.

2.3. The effect of the small sample size

Wide datasets with low sample size are typically too small
to allow for a split into training and testing. Take for exam-
ple The Great British Medallists Research Project which is an in-
depth study of 32 former GB athletes from Olympic sports® Se-
lecting the most important traits and practices may inform fur-
ther training and selection decisions for boosting the performances
of elite athletes. The dataset limits come from the fact that there
are simply no more instances to add. Nonetheless, the hold-
out protocol where relatively small-size data sets are split ran-
domly into a training and a testing part is still used in feature
selection [31].

The problem of an inadequately small sample size has been
flagged in the past [32]. However, here we are interested in ex-
treme cases of very small-size data, which have not been consid-
ered before.

While concerns have been raised before, to the best of our
knowledge, there is no comprehensive experimental study which
clearly demonstrates the extent of the problem of overfitting in
feature selection for very low-sample-size data. To illustrate this
point, we replicated results due to Raunannen, 2003 [15]. The
problem of the overfitting has been aptly exemplified by a sequen-
tial forward selection (SFS) on the ‘sonar’ data from the UCI repos-
itory [33] (2 classes containing respectively 97 and 111 instances,
and 60 features). Half of the data was used for training, and the
other half for testing. The feature selection was carried out through
the leave-one-out cross-validation protocol (LOO) on the training
part of the data. The nearest neighbour classifier (1-nn) was used
as the classifier of choice in the wrapper approach. Thus the ac-
curacy of the classifier with the selected feature subset is directly
the output from the SFS procedure. The “proper” testing accuracy
was subsequently estimated on the testing data for all feature set
sizes. Fig. 1 shows the training (LOO) accuracy and the testing clas-
sification accuracy for 10 splits into halves, and the accuracy aver-
aged across the 10 splits. The axes are formatted to match exactly
Fig. 1 in the original paper.

Both curves match the ones in the original paper. We further
carried out experiments where instead of 50% (104 instances), the
training data contained 20% (42 instances) and 10% (21 instances)
of the data. Again, 10 runs with different random splits into train-
ing and testing were carried out, and the accuracy curves were av-
eraged across the 10 runs. Fig. 2 shows the averaged accuracies as
functions of the cardinality of the feature set.

To highlight the severity of the problem, we showed the dis-
crepancy between predicted and actual accuracy by joining the
corresponding values for 50% split of the data. The figure shows
that the gap between these accuracies increases dramatically for
smaller training sizes considered here.

Here we examine experimentally the inadequacy of the flawed
protocol and propose an alternative.

3 http://ipep.bangor.ac.uk/medalists_research.php.en.
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Fig. 1. Results for the ‘sonar’ data set replicating the SFS illustrative experiment
of Reunanen, 2003 [15]. The subsets of features were obtained from SFS. The leave-
one-out accuracy of 1-nn was used as the as the feature subset evaluation criterion.
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Fig. 2. Comparison of accuracies for different sample sizes for the ‘sonar’ data set.
Small markers show the training (predicted) accuracy, and large markers, the test-
ing (actual) accuracy of the 1-nn classifier. The subsets of features were obtained
from SFS. The leave-one-out accuracy of 1-nn was used as the as the feature subset
evaluation criterion.

3. Methods

3.1. Feature selection approaches and their applicability to
small-sample-size data

While the field abounds with feature selection methods, little
will be suitable for the wide datasets considered here. The way
of traversing the possible candidate subsets of features will be no
different from the ways adopted in the conventional approaches.
However, the criterion for evaluating these subsets must be cho-
sen with caution. Consider the three established approaches: wrap-
per, filter, and embedded selection [34]. In the wrapper approach,
a classifier is trained using the candidate subset of features, and a
discrimination measure (usually the classification accuracy) is sub-
sequently calculated. The filter approach, on the other hand, uses
a proxy for the desired discrimination measure, and avoids train-
ing a classifier. While in the former two approaches the classifier
model is not directly responsible for selecting or ranking the fea-

Select using F ——| § |—— LOO of C(S) —— Aroo(S)

Fig. 3. Diagram of the widely used but incorrect (contaminated) protocol for fea-
ture selection. Boxes represent inputs and outputs; shaded boxes represent output
returned to the user; and circles represent procedures. S is the selected subset
of features; Ajpo(S) is the classification accuracy predicted through leave-one-out
cross-validation for the chosen classifier C, and F is the chosen feature selection
method.

tures, some classifier models allow for this combined process (em-
bedded approach). Examples of such models are the decision tree
classifier, the linear SVM classifier, and the random forest classifier
ensemble [35].

It is universally accepted that wrapper methods give better re-
sults than filter or embedded methods. For wide datasets, however,
the drawbacks of the wrapper approach are amplified into major
flaws. The first flaw is the lack of fidelity. In a dataset with N ob-
jects, a leave-one-out (N-fold) cross-validation will give only N + 1
possible distinct values for the accuracy. The feature sets of inter-
est will likely take an even more limited set of values correspond-
ing to the higher spectrum of the accuracies. Thus, they may not
be distinguishable from one another or from other, less valuable,
feature sets. The second flaw is the increased risk of overfitting
compared to the filter or the embedded approach. Thus, we pro-
pose to use the state-ot-the-art filter and embedded methods for
evaluating the candidate subsets for extreme wide datasets. In the
experiments further on, we apply the Fast Correlation-Based Filter
(FCBF) [6], ReliefF [36,37], and the Symmetrical Uncertainty [38].

3.2. The right and the wrong protocols

Here we argue the main point of this study. A remarkably large
number of studies in feature selection, including some quite influ-
ential ones, use a flawed (contaminated) protocol, which openly or
subtly includes peeking. This protocol is illustrated in Fig. 3. First,
the feature selector F is applied to the data, and a set of features
S is selected. Next, classifier models C are evaluated on the same
data, possibly using cross-validation, and the best classifier is re-
turned to the user along with the estimate of the classification ac-
curacy from the cross-validation experiment, A;gg.

The caveat here is that the dataset is used twice: once for find-
ing S through F, and once for evaluating C. Thus the classifier’s
testing data have already been used for selecting S. Hence, a pos-
itive bias can be expected due to this “peeking”. How can this
be done without peeking? Fig. 4 shows one possible answer in
the form of a non-contaminated protocol, which will be called the
“proper” protocol.

In the proper protocol, the cross-validation loop includes the
feature selector F. A feature set (or ranking) S; is obtained for each
cross-validation fold using the respective training data. Then the
chosen classifier C(S;) is trained on the same training data using
the selected features. Finally the testing data for the fold is used
to evaluate the accuracy of C(S;). By averaging the accuracies for
the cross-validation folds, we obtain one final value, Apgg, Which
estimates the accuracy of the whole process (feature selection fol-
lowed by classification). At no point in this training process is the
testing data seen by the feature selector or classifier. At the end,
the output returned to the user is the feature set S obtained from
the whole dataset through 7. Interestingly, in most cases, this is
the same set obtained from the wrong protocol. The difference is
in the classification accuracy which accompanies this set. Our hy-
pothesis is that, due to the peeking, A;qp is optimistically biased,
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LOO on F
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Test C(S;) on testing fold 4.
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Select using F —— S

Fig. 4. Diagram of the “proper” protocol for feature selection. Boxes represent in-
puts and outputs; shaded boxes represent output returned to the user; and circles
represent procedures. S is the selected subset of features; Apro(S) is the classification
accuracy predicted through leave-one-out cross-validation for the chosen classifier
C, and F is the chosen feature selection method.
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Fig. 5. An example of the optimistic bias of the wrong feature selection protocol
using the arrhythmia data from UCL

and therefore misleading, while Apgg is closer to the true accuracy,
which can be estimated from a previously unseen testing set.

3.3. An example of the optimistic bias of the wrong protocol

Fig. 5 shows an example of the above argument. We chose the
arrhythmia dataset from the UCI repository [33]. The data contains
279 features (attributes) and 452 objects (instances). We grouped
the class labels into two classes: (1) normal (207 objects, 45.8%)
and (2) arrhythmia (245 objects, 54.2%). Extreme wide datasets
were sampled 100 times, with 10 objects in each class. We chose
the ReliefF feature ranker as 7, and the linear discriminant clas-
sifier (LDC) with a diagonal covariance matrix and uniform priors
as C. A feature ranking was obtained for each of the 100 runs. The
incorrect protocol illustrated in Fig. 3 was applied to derive the
predicted accuracy Ajoo(S) for feature subsets of increasing cardi-
nality, labelled ‘LOO’ in the figure. In this example, we set the max-

imum cardinality to 40% of the cardinality of the feature set. The
“proper” protocol was applied as well, giving accuracy Apgg, which
is labelled as ‘Proper’ in the figure.

The accuracy of C trained on the whole wide dataset of 20 ob-
jects, Ar (labelled ‘Test’ in the figure), was evaluated using the re-
maining 432 objects left aside for testing. We treat this value as
the desired quantity, which A;g9 and Apgp strive to approximate.
For comparison, for every run, we calculated the accuracy of a ran-
dom permutation of the features instead of the ranking offered by
F. As there is no selection method to cross-validate in the random
approach, the “wrong” and the “proper” protocols both amount to
evaluating the LOO accuracy using the training data, denoted R;gg,
and labelled as ‘Random LOQO’ in the figure. Again, we subsequently
calculated the quantity which R;gg attempts to predict by evaluat-
ing a C trained on the whole training data (with the respective
random subset of features) using the testing part of the data. This
value, Ry, is labelled in the figure as ‘Random Test'.

The graph shows exactly where the problem lies. We have
shaded the gap between Ajpp and Ar in blue, and the gap be-
tween Apgg and Ar in red. Clearly, Ajgo is heavily optimistically bi-
ased, whereas Apgp is a lot closer to Ar. The large optimistic bias
is caused by using the wrong protocol (peeking), which, unfortu-
nately, is the standard practice in many studies, even very highly
valued ones. However, Apgo is not a perfect solution to this prob-
lem either. There is a visible pessimistic bias of Apgg. One possible
reason for this bias is that when we evaluate C in Part 1 of the
right protocol in Fig. 4, the classifier is built on N — 1 objects, and
for the testing accuracy, we build the classifier on all N objects.
Given that N is quite small, the difference of one object is notice-
able, even for a stable classifier models as LDC. Still, we argue that
this bias is smaller than the bias of Ajgg, and is better suited as a
guarantee returned to the user.

The random curves, expectedly, run under the curves using a
proper feature selector, showing lower classification accuracy. The
argument why R;go is worse than Ry is the same as above. To ob-
tain R;pp, we train C on N — 1 objects, and for Ry, on N objects.

The classification accuracy as a function of the number of fea-
tures will not behave in the same way for all classifiers. There
could be idiosyncratic pockets of features which perform excel-
lently for a specific classifier and are largely overlooked by most
other classifiers. The peak-effect may be strongly or less strongly
pronounced depending on the classifier. The same argument holds
for the feature selection method F. There could be “lucky pairings”
between F and C for the dataset of interest, giving high accuracy
with fewer features, but this cannot be known in advance.

4. Experimental study

The purpose of the experiment is to verify our hypothesis that
the proper feature selection protocol gives a closer estimate of the
testing accuracy than the widely used contaminated protocol. In
addition, we will seek to answer the following questions:

1) Does the protocol choice have the same impact over different
feature selection methods?

2) Does the protocol choice have the same impact over different
classifier models?

4.1. Data

The characteristics of the 24 datasets used here are presented
in Table 1. They were taken from the repository* [20]. Some of the
datasets within the collection are from the UCI Machine Learning
Repository [33].

4 The repository is available at http://featureselection.asu.edu/datasets.php.
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Table 1

Characteristics of the high-dimensional datasets.
Dataset Instances Features Classes
ALLAML 72 7129 2
arcene 200 10,000 2
BASEHOCK 1993 4862 2
Carcinom 174 9182 1
CLL_SUB_111 111 11,340 3
COIL20 1440 1024 20
colon 62 2000 2
gisette 7000 5000 2
GLI_85 85 22,283 2
GLIOMA 50 4434 4
Isolet 1560 617 26
leukemia 72 7070 2
lung 203 3312 5
lymphoma 96 4026 9
madelon 2600 500 2
PCMAC 1943 3289 2
Prostate_GE 102 5966 2
RELATHE 1427 4322 2
SMK_CAN_187 187 19,993 2
TOX_171 171 5748 4
USPS 9298 256 10
warpAR10P 130 2400 10
warpPIE10P 210 2420 10
Yale 165 1024 15

4.2. Feature selectors and classifiers

The experiments for this part of the study were carried out in
Weka [39]. We experimented with the following choices of fea-
ture selection methods F and classifier models C implemented in
Weka:

Symmetrical Uncertainty [38] (SU) is a measure of correlation
between two nominal features based on their individual and joint
entropies. When one of the two features is the class variable, we
have a measure of the worth of the paired feature. This mea-
sure can be used for ranking the features. It does not take into
account any interaction between them. To apply this measure to
continuous-valued features, they are first discretised.

Fast correlation-based filter (FCBF) [6] also uses SU. Unlike SU,
however, it takes into account the correlation between the fea-
tures. The method aims at selecting features which have high cor-
relation with the class variable and low correlation among them-
selves.

ReliefF [37], a variant of Relief [36], is an instance-based fea-
ture ranking method. A subset of the instances is randomly se-
lected multiple times and the feature weights are updated based
on the proximity of the instances from the same classes in the se-
lected sample.

The classifiers used were: the nearest neighbour (1-NN), the
decision tree classifier (J48) [40], the linear discriminant classifier
(LDC),> the naive Bayes classifier (NB) and the Random Forest clas-
sifier ensemble (RF) [41].

4.3. Calculation of the criteria values

We carried out 10 runs for each data set. For FCBF, the
number of features was determined within the algorithm. For
the ranker methods, the number of features was varied as
{1,2,...,9,10, 15,20, ...100}. In each run, the dataset was ran-
domly split into a training part of 10 x ¢ instances for training,
and the remaining instances for testing, where c is the number of
classes. Denote the training part (10 instances per class) by Dipain»
and the testing part by Diest. For a chosen feature selection method

5 pseudo-linear LDA is implemented in Weka.

F and a chosen classifier model C (for a fixed number of features
or number determined by F), we calculated the following criteria
of interest:

e Ajpo- Apply F on Dy,i, to obtain feature set S. Denote by
Drrain (S) the restriction of Dy,;, on the feature subspace S. Eval-
uate C on Dy,iy(S) using leave-one-out cross-validation. This
accuracy is Ajgo-

e Apgo- Organise a leave-one-out loop on Dy,;,. For each training
fold, i, apply F (with or without cross-validation) to obtain fea-
ture set S;. Test C using S; on the remaining testing instance.
The averaged accuracy on the testing instances is Apgo.

e Ar. Apply F on Dy, (with or without cross-validation) to ob-
tain feature set S. (This is the same step as in calculating A;gg.)
Evaluate C on Diest(S). This accuracy is Ar.

4.4. Protocol and results

To enable statistical analyses, we need to determine a suitable
number of features for the rankers. We tried two approaches:

e Maximum. For each run, identify the maximum of the curve
Ajoo and store the smallest number for which this maximum
is achieved, Ny. In the same way, determine Ny, for which the
curve of the proper protocol peaks.

Parabola. Assuming that there is a peak effect as described
in Section 2, we fit a parabola y = ax? + bx + ¢ (through least
squares) to Ajgo and Apgo. If the parabola is convex (a <0), we
return the position of the maximum Np = —2% (similarly for
Np). If the parabola is concave, the Maximum method above is
applied to determine Np (N}).

In this way, we may have different feature sets and different
cardinalities by LOO and Proper. Denote by A}'( the accuracy Ax
measured for a feature set of cardinality Y. If our hypothesis is cor-
rect, ANy, will be closer to AY' than A, is to AY. In other words,
we would expect the following inequality to hold:

|A11¥1/zo _A¥,| < |Aliloo —A¥|~ (1)

Tables 2-6 show the results for the individual data sets,
and the feature selection methods: FCBF, ReliefF/Maximum, Re-
liefF/Parabola, Symmetric Uncertainty/Maximum, and Symmetric
Uncertainty/Parabola. We show the classification accuracies Ajqo,
Apro, and the respective A7, averaged across the 10 runs and the
5 classifiers. Given in the tables are also the averaged cardinal-
ity of the selected feature subset, |S|, for each dataset. We denote
the difference of interest by Ay = Ay — Ar, where X stands for LOO
or PRO. The columns with the differences are shown in boldface
in the table. For each dataset, the smaller one of the two differ-
ences A - by absolute value - is shown in a box. Since the val-
ues of the classification accuracies are not commensurable across
datasets, nor are the differences thereof, only the sign rank statis-
tical test is applicable. The p-values from the sign test comparing
the paired values of |A| are given in the respective table* caption.
For all feature selection methods, we found significant difference
at level 0.01. This supports our hypothesis that the proper protocol
gives closer estimates of the true accuracy compared to the peek-
ing protocol for very small-size data.

Next we ran the sign test for the paired observations separately
for each classifier and feature selection method. Each test was cal-
culated from 240 pairs of values (24 data sets, 10 runs). We ran the
right-tailed sign test with null hypothesis: |Aprg — A7| > |AL00 — AT |
(LOO is equivalent or better than the proper protocol). All p-values,
with one exception, were under 0.00005, strongly rejecting the
null hypothesis, thereby landing further support to our claim. The
only relatively larger p-value of 0.0274, still under 0.05, was ob-
served for the FCBF feature selector and the J48 classifier.
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Fig. 6. Scatteplot of |A;pp — Ar| versus |Apro — Ar| the five classifier models. Each point on the plot comes from one run, a given feature selection method and the classifier

specified in the title of the sub-figure. W/D/L mean win/draw/loss, where W is the percentage of points where (1) holds.
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Fig. 7. Scatterplot of Ajpp and Apro versus Ar. A dot marker represents (Ar, Ajoo) for
a given data set, and a triangle marker, (Ar, Apgo). The markers for the same data
sets are joined by an arrow from LOO to PRO.

To examine further the effect of the classifier model on the
differences between the predicted and true accuracy, we plot in
Fig. 6 |Ajpo — Ar| versus |Apgo — Ar| for the five classifier models.
Each point on the plot comes from one run, a given feature se-
lection method and the classifier specified in the title of the sub-
figure. Thus, each plot contains 24 datasets x 10 runs x 5 feature
selection methods/variants = 1200 points. Out of these, we cal-
culated the percentage where |A;go —Ar| > |Apro — Ar|, support-
ing our hypothesis, shown as “win” (W) in the title of the sub-
figure. All such points are above the diagonal line of the square.
We also show in the title the percentage of draws (D), where
|Aroo — Ar| = |Apro — Ar|. and the percentage of losses (L), where
|Aroo — Ar| < |Apgro — At|. It sign test is applied to any of the data
subsets in the 5 sub-figures, the hypothesis in Eq. (1) is strongly
supported.

Finally, we illustrate the reduction of optimistic bias when us-
ing the correct protocol in Fig. 7. We chose one example of feature
selection method (ReliefF/Max) and classifier (Random Forest) but
we note that all such plots look similar. A;pp, Apgo and the respec-
tive Ar are averaged across the 10 runs for each data set. A dot

marker represents (Ar, Agg) for a given data set, and a triangle
marker, represents (Ar, Apro)- The markers for the same data sets
are joined by an arrow from LOO to PRO. The downward tendency
of the arrows shows the reduction of the optimistic bias by apply-
ing the correct protocol.

In summary, we confirm that using the proper protocol for fea-
ture selection from very wide datasets gives more truthful results
compared to the currently favoured protocol, which we termed
here “the wrong” protocol or the “contaminated” protocol. Our re-
sults also suggest that the bias is likely universally present across
many feature selection methods and classifier models.

5. Conclusions

This paper demonstrates the importance of applying a clean
(non-contaminated) protocol for feature selection for wide datasets
with a very low sample size. While the set of features returned to
the user may be the same from both protocols, the estimate of the
classification accuracy, which must be returned too, will likely be
misleading if the wrong protocol is used. Running an experimen-
tal study with 24 datasets, we found statistically significant differ-
ences between the biases of the wrong and the proper protocols
for all classifier models and feature selection methods we tested.

Based on these results, we recommend using the proper proto-
col (Fig. 4) instead of the popular alternative (Fig. 3).

Further on, the ranker methods, which are suitable for this type
of data, need additional analysis for choosing the cardinality of
the feature set to be returned. We examined two simple variants:
maximum and parabola, and found that the conclusions applied to
both. As a future line of research, we are planning to investigate
other methods for determining the cardinality of the best feature
subset using a stability index [42,43]. Ensembles of ranker methods
are also a good way forward [44] for very small-size data. In ad-
dition to a more stable ranking, they offer further possibilities to
use stability for obtaining the cardinality of the returned feature
subset. Most importantly, one should seek to increase the sample
size.
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Table 2

FCBF feature selection method. Classification accuracies A;oo, Apro, and the respective Ar, av-
eraged across the 10 runs and the 5 classifiers. |S| is the averaged cardinality of the selected
feature subset. Ay = Ax — Ar, where X stands for LOO or PRO. The columns with the differ-
ences are shown in boldface. For each dataset, the smaller one of the two differences A - by
absolute value - is shown in a box. The p-value of the sign test for equivalence of Ao and
Apgo is 0.0066.

Dataset N Ao Ar Aroo N Apro At Apro
ALLAML (20) 923 802 121 (20) 802 802
BASEHOCK (58) 776 650 126  (58) 572 650
CLLSUB_111  (446) 883 556 327  (446) 665 556

COIL20 (1014) 841 850 (1014) 830 850

Carcinom (1927) 887 868 (1927) 816 868

GLIOMA (373) 877 675 202  (373) 681 675

GLI85 (20) 949 706 243  (20) 659 706

Isolet (170) 682 675 (170) 649 675 ;
PCMAC (48) 714 576 138  (48) 509 576
Prostate_GE (46) 951 783 168  (46) 778 783
RELATHE (65) 806 542 264  (65) 557 542 [15]
SMK_CAN_187 (133) 868 540 328  (133) 603 540
TOX_171 401) 775 542 233 (400) 528 542 [-15]
USPS (176) 711 730 (176) 682 730 -47
Yale (182) 633 567 66 (182) 586 567
arcene (215) 843 547 296  (215) 513 547
colon (128) 861 626 235  (128) 658 626 2
gisette (170) 910 705 205  (170) 675 705

leukemia (80) 962 872 9.0 (8.0) 792 872
lung (686) 939 848 91 (686) 870 848 [22]
lymphoma (466) 979 915 64 (466) 900 915 [-15]
madelon (8.6) 811 497 314  (86) 352 497
WarpAR10P (234) 815 805 [11] (234) 754 805 -50
warpPIE10P (485) 925 913 12 (485) 907 913
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Table 3

ReliefF feature selection method, MAXIMUM version. Classification accuracies Ao, Apro, and
the respective Ar, averaged across the 10 runs and the 5 classifiers. |S| is the averaged car-
dinality of the selected feature subset. Ax = Ax — Ar, where X stands for LOO or PRO. The
columns with the differences are shown in boldface. For each dataset, the smaller one of
the two differences A - by absolute value - is shown in a box. The p-value of the sign test
for equivalence of Ajpp and Apgo is 0.0015.

Dataset Is| Ao Ar Aroo N Apro  Ar Apro
ALLAML (15.2) 97.6 86.9 10.7 (19.2) 93.9 875
BASEHOCK (21.6) 87.2 62.5 24.7 (8.2) 69.3 60.3
CLL_SUB_111 (30.0) 84.1 521 32.0 (22.3) 78.1 511
COIL20 (925) 721 730 (877) 709 722
Carcinom (695) 853 827 26 (693) 808 826
GLIOMA (35.7) 875 69.1 18.5 (27.3) 80.5 68.2
GLI_85 (7.7) 96.9 75.1 21.8 (19.7) 86.6 77.0
Isolet (89.4) 674 674 (901) 669 673
PCMAC (20.0) 88.4 59.6 28.8 (15.0) 65.0 58.1
Prostate_GE (165) 965 796 169  (124) 899 806
RELATHE (17.0) 88.8 543 345 (29.3) 64.1 54.4
SMK_CAN_187 (13.6) 93.9 57.6 36.3 (18.0) 72.6 56.7
TOX_171 (43.2) 79.8 56.2 23.6 (51.2) 65.8 57.8
UsPs (670) 726 720 (661) 705 719
Yale (684) 632 597 35 (700) 604 6038
arcene (191) 908 580 328  (260) 693 567
colon (7.9) 90.8 62.8 28.0 (11.7) 75.5 64.3
gisette (15.4) 95.0 72.9 221 (24.6) 83.0 741
leukemia (12.5) 99.2 89.8 9.4 (15.8) 95.8 89.7
lung (449) 928 812 115  (570) 897 825
lymphoma (166) 991 775 216  (393) 947 778
madelon (278) 935 508 427  (189) 664 50.
WarpAR10P (629) 776 774 (60.2) 762 765 02
warpPIE10P (549) 899 849 49 (519) 878 853
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Table 4

ReliefF feature selection method, PARABOLA version. Classification accuracies Ao, Apro, and
the respective Ar, averaged across the 10 runs and the 5 classifiers. |S| is the averaged car-
dinality of the selected feature subset. Ay = Ax — Ar, where X stands for LOO or PRO. The
columns with the differences are shown in boldface. For each dataset, the smaller one of
the two differences A - by absolute value - is shown in a box. The p-value of the sign test
for equivalence of Ajpo and Apgo is 0.0003.

Prostate_GE 315) 95.1 804 14.7 90.1 80.0

Dataset N Ao Ar Aoo IS| Apro  Ar Apro
ALLAML 435) 969 900 69 (475) 959 895
BASEHOCK (338) 847 636 211 (154) 736 6l1 [125]
CLLSUBITl  (479) 791 519 272  (410) 767 511 [255]
COIL20 (856) 696 716 —20  (856) 697 717
Carcinom (671) 798 817 (718) 793 815 —2.2
GLIOMA (604) 817 680 (538) 819 682 138
GLL85 (329) 963 781 182  (408) 910 775
Isolet (86.7) 654 669 -15  (888) 657 671
PCMAC (391) 842 597 245

( (

( (

( (

)
)
)
)
263) 720 582
)
)
)
)

RELATHE 343) 845 540 305 379) 689 546
SMK_CAN_187 (319) 916 582 334 329) 787 565 [222]
TOX_171 (603) 730 571 158  (663) 703 590
USPs (766) 692 721 (776) 691 721  -3.0
Yale (662) 592 613 -21  (724) 594 613

arcene (378) 884 582 302  (382) 775 570

colon (177) 888 632 256  (237) 782 641

gisette (328) 939 742 197  (319) 840 740

leukemia (252) 990 900 9.0 (286) 964 902

lung (712) 890 848 43 (752) 887 858
lymphoma (561) 985 832 153 (649) 970 838 [132]
madelon (516) 909 508 401 (273) 743 500
warpAR10P (672) 751 773 -21  (698) 754 775
warpPIE10P (581) 875 852 2.3 (59.0) 873 856
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Table 5

Symmetrical Uncertainty feature selection method, MAXIMUM version. Classification accu-
racies Ajpo, Apro, and the respective Ar, averaged across the 10 runs and the 5 classifiers. |S]
is the averaged cardinality of the selected feature subset. Ax = Ax — Ar, where X stands for
LOO or PRO. The columns with the differences are shown in boldface. For each dataset, the
smaller one of the two differences A - by absolute value - is shown in a box. The p-value

of the sign test for equivalence of Ajgp and Apgo is 0.0003.

Dataset N Ao Ar Ajoo Is| Apro  Ar Apro
ALLAML (96) 986 855 131 (218) 926 870
BASEHOCK (87) 841 649 192  (134) 701 632
CLLSUBII1  (188) 871 533 337  (280) 757 542 |[215]
COIL20 (819) 790 792 (837) 778 791 -13
Carcinom (564) 880 852 28 (619) 825 850 [-25]
GLIOMA (285) 893 638 254  (349) 803 658
GLI_85 (32) 988 724 264  (229) 838 752
Isolet (866) 686 684 (867) 678 684 —06
PCMAC (109) 804 592 212  (51) 690 607
Prostate_GE (60) 985 812 173  (180) 894 817 7
RELATHE (132) 876 529 347  (97) 670 530
SMK_CAN_187  (124) 956 553 403  (99) 738 554
TOX_171 (377) 803 558 245  (443) 660 553
USPs (764) 655 654 (774) 634 651 -17
Yale (49.0) 676 613 62 (514) 637 591
arcene (172) 938 561 377  (241) 674 563 [111]
colon (71) 923 632 291 (253) 747 613
gisette (206) 961 742 2189  (244) 822 739
leukemia (65) 994 877 17 (176) 928 901 [27]
lung (386) 958 812 146  (511) 900 819
lymphoma (232) 995 800 195  (453) 938 823 [115]
madelon (151) 920 501 418  (229) 598 501
warpAR10P (645) 789 773 16 (616) 768 776
warpPIE10P (682) 903 872 3.0 (69.4) 889 867
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Table 6

Symmetrical Uncertainty feature selection method, PARABOLA version. Classification accura-
cies Ajoo, Apro, and the respective Ar, averaged across the 10 runs and the 5 classifiers. |S|
is the averaged cardinality of the selected feature subset. Ax = Ax — Ar, where X stands for
LOO or PRO. The columns with the differences are shown in boldface. For each dataset, the
smaller one of the two differences A - by absolute value - is shown in a box. The p-value

of the sign test for equivalence of Ajpo and Apgo is 0.0015.

Dataset S| Ao Ar Aroo Is| Ao Ar Apro
ALLAML (322) 982 875 107  (482) 939 877
BASEHOCK (280) 813 646 167  (338) 761 644
CLLSUB_111  (223) 854 535 318  (496) 759 549
COIL20 (734) 767 783 (729) 763 784 -21
Carcinom (620) 853 856 (672) 844 858 -15
GLIOMA (399) 857 668 189  (520) 827 691
GLI_85 (150) 987 756 231  (305) 864 755
Isolet (903) 670 682 [-12] (926) 671 684 13
PCMAC (252) 790 591 199  (141) 717 606 [111]
Prostate_GE (185) 973 811 162  (386) 916 817

RELATHE (284) 841 534 307  (343) 765 529
SMK_CAN_187  (20.7) 947 558 389  (149) 781 557
TOX_171 (601) 751 580 171 (634) 712 578
USPs (831) 629 651 [-21] (855) 626 652 -26
Yale (569) 636 611 25 (568) 638 613
arcene (335) 919 574 345  (414) 766 572

colon (147) 908 620 288  (410) 793 616
gisette (332) 950 746 204  (348) 842 738
leukemia (194) 992 886 106  (362) 945 905
lung (618) 940 828 111 (704) 918 832
lymphoma (590) 982 856 126  (69.0) 975 855

madelon (211) 859 504 355  (357) 692 501
warpAR10P (606) 763 787 —24  (630) 766 785
warpPIE10P (677) 883 870 13 (683) 880 871
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