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Classifier Ensembles with A Random Linear Oracle
Ludmila I. Kuncheva (Member IEEE) and Juan J. Rodrı́guez (Member IEEE)

Abstract— We propose a combined fusion-selection ap-
proach to classifier ensemble design. Each classifier in the
ensemble is replaced by a mini-ensemble of a pair of sub-
classifiers with a random linear oracle to choose between
the two. It is argued that this approach encourages extra
diversity in the ensemble while allowing for high accuracy
of the individual ensemble members. Experiments were
carried out with 35 data sets from UCI and 11 ensemble
models. Each ensemble model was examined with and
without the oracle. The results showed that all ensemble
methods benefited from the new approach, most markedly
so random subspace and bagging. A further experiment
with 7 real medical data sets demonstrates the validity of
these findings outside the UCI data collection.

Index Terms— Classifier ensembles, Fusion and selec-
tion, Random hyperplane, Multivariate (oblique) decision
trees

I. INTRODUCTION

CLASSIFIER fusion and classifier selection are
two complementary approaches to designing

classifier ensembles [18]. The underlying assump-
tion in classifier fusion is that the classifiers have
‘expertise’ across the whole feature space and are
likely to misclassify different objects. To derive
the class label for a new object x, the decisions
of the classifiers in the ensemble are combined
by a consensus-type rule, e.g., majority voting.
Conversely, in classifier selection, the classifiers are
assumed to have complementary expertise. When a
new object x is submitted for classification, a single
‘most competent’ classifier is chosen and given
the authority to assign the class label. Classifier
selection assumes the existence of an oracle which
selects the classifier with the highest competence for
x.

In this study we propose to combine selection
and fusion within a single ensemble. To build each
classifier, first a random oracle is created in the
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form of a hyperplane. The data in each half-space is
used to train a classifier within the chosen ensemble
approach. During classification the oracle for each
classifier is applied and the respective sub-classifier
makes the decision to be fused further at ensemble
level. The paper is organised as follows. Section
II explains classifier selection. Section III details
the proposed random linear oracle approach and
gives a brief reference to multivariate decision trees.
Section IV explains why the random oracle idea
works. The experimental details and results with
35 data sets from UCI are given in Section V.
Further results on 7 real medical data sets confirm
the findings beyond the UCI data collection. Section
VII concludes the study.

II. CLASSIFIER SELECTION

The idea of classifier selection resurfaced several
times under different names in the past 30 years [1],
[8], [16], [20], [31], [36]. The following approaches
can be detailed [21]
Static classifier selection. The regions of com-
petence of each classifier are specified during a
training phase, prior to classifying. In the operation
phase, an object x is submitted for classification.
The region of x is first found, and the classifier
responsible for this region is called upon to label
x [2], [31], [39].
Dynamic classifier selection. The choice of a clas-
sifier to label x is made during the classification.
The classifier with the highest competence gives the
label of x. The oracle here consists of estimating
the accuracies (competences) and pronouncing the
winner [9], [10], [13], [31], [34], [35], [37], [42]
The difference between the first and the second
approaches reduces to whether or not evaluation of
competence is carried out during the classification.
Specifying the regions is, in fact, a pre-judged
competence and can be viewed as a faster version
of the dynamic classifier selection approach.
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III. RANDOM LINEAR ORACLE

Switching between selection and fusion was pro-
posed in [21]. If the dominance of the nomi-
nated classifier over the remaining classifiers is
not statistically significant, the whole ensemble is
summoned, and the classifier decisions are fused.
Otherwise the nominated classifier alone makes the
decision. A natural fusion-selection scheme is the
so-called mixture of experts [2], [16], [36]. The
classifiers and the oracle are trained together so
that the classifiers are pushed into specialising in
different regions of the feature space, developed
as part of the training. Along with enforcing this
differentiation, the oracle learns which classifier
to trust most for a given x. The oracle in this
case is able to assign weights of competence to
the classifiers depending on the input x instead of
choosing a single most competent classifier. Thus
the ensemble decision is derived as a fusion of
weighted opinions. Data-dependent fusion has been
advocated as a more accurate alternative of mere
fusion [17], [28]. As usual, the success of flexible
and powerful approaches as these critically depends
upon availability of a bespoke training procedure.

This paper proposes a different fusion-selection
scheme based on a random oracle. The idea is to
replace each classifier in the ensemble by a mini-
ensemble of two classifiers and an oracle, where
the oracle is a random linear function. When a new
object comes for classification, the oracle for the
respective classifier decides which sub-classifier to
use. The labels issued by the sub-classifiers are then
combined through the ensemble combination rule.
During training the ensemble heuristic is applied
first. For example, prior to the oracle stage, the
training set may be selected by re-sampling or re-
weighting the data, feature subsets may be selected
or extracted or supra-classes may be formed within
the ECOC ensemble approach. The random linear
oracle approach is generic because it “encapsulates”
only the base classifier and can fit within any
ensemble strategy or base classifier model. Even
more, the random oracle itself may serve as the
ensemble building heuristic.

Figure 1 gives a formal description of the random
linear oracle procedure for any chosen ensemble
method. In the notations in the figure, a classifi-
cation problem P is defined as a labelled training
set T and a set of classes Ω. A classifier model

(learner), D(T,Ω), is a training procedure to derive
a classifier from a given labelled training set T with
labels from Ω. An ensemble method is characterised
by an ensemble heuristic E and a combination
rule. For example, the Random Subspace ensemble
method selects a random feature subset for each
ensemble member. Thus applying E to the training
data to obtain classification problem Pi will return
a set Ti with all the objects in the original training
data but with a random subset of features. The
set of classes Ω will be the same as the original
set. For an ensemble using the Error Correcting
Code (ECOC) method, E will return training set
Ti identical to the original training set but the set
of labels Ωi will represent a two-class problem
by a predefined grouping of the original classes.
The ensemble construction framework with random
oracle is laid out in a sequential way in Figure
1 so that incremental ensemble methods such as
AdaBoost can be accommodated. Even if E is
the identity mapping, i.e., reproduces the original
classification problem with training set T and class
set Ω, the Random Oracle method can generate a
viable ensemble.

The proposed model is different from the standard
classifier selection paradigm where one oracle gov-
erns the whole ensemble. Multiple random oracles
also make the proposed approach different from
the mixture-of-experts and the switching model dis-
cussed above.

The linear oracle approach touches upon an area
which at first glance appears to be far from classifier
selection – multivariate (or oblique) decision trees.
Decision trees are termed oblique when the split at
each node is not necessarily parallel to the feature
axes. In classical decision tree induction one feature
is selected for each node and the optimal split of
the node into children nodes is determined so as
to optimise a given criterion. Oblique trees may
use any function of any subsets of features at each
node. To gain from this flexibility ingenious training
algorithms are required. Oblique trees have been
found to be much smaller and equally accurate com-
pared to standard trees [6], [29]. Linear functions
are the traditional choice. Perceptron-like algorithms
have been proposed whereby the coefficients of the
hyperplane at each node are sequentially updated
with the presentation of each new training example
reaching that node [6]. The approaches vary from
randomised hill climbing [30] to evolutionary algo-
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RANDOM LINEAR ORACLE

1) Initialisation: Choose the ensemble size L, the base classifier model D and the ensemble
construction heuristic E.

2) Ensemble construction: for i = 1, . . . , L

a) Apply E to the training data to formulate a classification problem Pi = {Ti,Ωi}.
b) Draw a random hyperplane hi in the feature space of Pi.
c) Split the training set Ti into T+

i and T−
i depending on which side of hi the points lie.

d) Train a classifier for each side, D+
i = D(T+

i ,Ωi) and D−
i = D(T−

i ,Ωi). Add the mini-
ensemble of the two classifiers and the oracle, (hi, D

+
i , D

−
i ), to the current ensemble.

3) Classification: For a new object x, find the decision of each ensemble member by choosing D+
i

or D−
i depending on which side of hi x is. Combine the decisions of all selected classifiers by

the combination rule of the chosen ensemble method.

Fig. 1. The generic algorithm for building a classifier ensemble with a random linear oracle.

rithms [7], [38], simulated annealing [14] and tabu
search [24]. The criterion being optimised at each
node is usually the minimum classification error
but other criteria have also been proposed, e.g., the
squared error [6], the minimum message length [38],
the classifiability [25] or impurity [30].

The difference between all these approaches and
the random linear oracle is that the oracle is not sup-
posed to optimise any criterion; the oracle merely
serves as a divider of the space into two random
halves. Any training of this hyperplane will be
harmful because it will take away the intended
diversity. In this line, all linear classifiers such as
the Fisher’s discriminant, Naı̈ve Bayes, the logistic
classifier and others are not suitable as oracles. The
most logical choice here seems to be a random
split. It has been observed that just a few training
iterations are sufficient to arrive at a near optimal
hyperplane for a node in the tree [30]. Optimising
classification accuracy at each internal node is a
greedy strategy whose overall optimality is not
guaranteed. Thus the random oracle at the root node
is not necessarily harmful with respect to the overall
performance of the tree.

The proposed fusion-selection scheme can be
recast as a classifier ensemble of the so called “om-
nivariate trees” [25], [43]. In omnivariate decision
trees the function to be used at each node is not
specified in advance, and can be picked from a set
of function during the induction of the tree. In our
case all ensemble members will be omnivariate trees
where there will be a random linear function at the
root node followed by standard univariate subtrees.
In the rest of the paper we will use the fusion-
selection metaphor because it expresses better our

motivation and results. Note that we do not use
any of the training approaches for omnivariate or
multivariate trees, so the analogy stops here.

IV. WHY DOES RANDOM ORACLE WORK?

While empirical studies about classifier ensem-
bles abound, theoretical results are still limited [18].
The reason for this is the complexity of ensemble
models compared to single classifiers. Being a more
versatile model than single classifiers, ensembles
can learn the training data with a higher preci-
sion but this is not a guarantee that they will
fare better on new unseen data. Another difficulty
in formalising classifier ensemble methods comes
from the fact that ensembles rely on the diversity
between the members. Diversity itself is a contro-
versial and difficult to formulate concept. Besides,
its relationship with the ensemble accuracy is not
straightforward [19], [22]. Therefore we present two
intuitive reasons to explain why random oracle may
work.

The success of the random oracle idea can be
attributed to two factors

1) By splitting the feature space into two parts,
the classification task may become easier for
the chosen classifier model. Thus the individ-
ual accuracy of the ensemble members is ex-
pected to be higher than, or at least no worse
than that of a “monolith” classifier over the
whole feature space. This is similar in spirit
to the divide-and-conquer strategy whereby
a problem is decomposed into subproblems
that are (supposedly) easier to solve individ-
ually. Although expected, higher individual
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the oracle

subclassifier A subclassifier B

Fig. 2. XOR classification problem and its solution using a linear
oracle and two linear subclassifiers.

accuracy is not guaranteed by any means, as
explained later.

2) The classification of a data point x will be
made by one of the two subclassifiers of
each ensemble member. Since the subclassi-
fiers have been trained on very different data
subsets (determined by the random oracle),
diversity is expected to be large.

As a simple example illustrating the first factor
consider the XOR problem in Figure 2. Suppose
that the base classifier is linear. Clearly, the base
classifier cannot provide perfect separation of the
two classes. However, any split of the data into
two non-empty subsets will result in two linearly
separable classes (one of these may contain a single
point).

To demonstrate the diversity factor, we run an
experiment with a synthetic data set. The training
set of 400 points is plotted in Figure 3 (a). Consider
again a linear base classifier. Eleven ensemble mem-
bers were built using different bootstrap samples
of the data (standard bagging). Finally, bagging
with linear oracle was applied. For each of the
classifiers, two different random points were chosen
from the training data set and the perpendicular
bisector of the segment between the two points was
taken to be the hyperplane (the separating line in
the 2d case). The two subclassifiers were trained
on the points from the bootstrap sample falling on
the two sides of the separating line. For testing,
a separate data set of 4000 points was generated
from the distribution of the problem. The averaged
individual error of the (linear) classifiers in the
bagging ensemble was 0.2167, while it comes at no
surprise that the averaged individual error for the
classifiers with the oracle was substantially lower,
0.1380. The ensemble errors were 0.2168 for the
classical bagging and 0.1212 for the ensemble with
the oracle. Figure 3 (b) plots the testing data set

(a) (b) (c)

Fig. 3. The training data set (a), the testing data set as labelled by
the classical bagging ensemble (b), and the testing data set labelled
by the ensemble bagging + oracle (c). For reference, the optimal
classification boundary is superimposed with a dashed line.

as labelled by the classical bagging ensemble. This
was done to visualise the classification boundary
obtained through the ensemble. Figure 3 (c) shows
the testing data labelled by the ensemble with the
oracle. The shape of the ensemble boundary is
far more adequate, which is also reflected in the
ensemble accuracies.

Margineantu and Dietterich [26] devised the so-
called “kappa-error” diagrams to show the rela-
tionship between the diversity and the individual
accuracy of the classifiers. Plotted in a kappa-error
diagram are L(L − 1)/2 points, where L is the
ensemble size. Each point corresponds to a pair
of classifiers, say D1 and D2. On the x-axis is
a measure of diversity between the pair, kappa.
Kappa evaluates the level of agreement between two
classifier outputs while correcting for chance [11].
For two classes, as in the above example, kappa is
calculated as

κi,j = 2(m1,1m2,2 −m1,2m2,1)/

((m1,1 +m1,2)(m1,1 +m2,1)

+(m1,2 +m2,2)(m2,1 +m2,2)), (1)

where mk,s is the proportion of the data set used
for testing, which D1 labels as ωk and D2 labels
as ωs. Low values of κ signify high disagreement
and hence high diversity. If the classifiers produce
identical class labels κ = 1. Alternatively, if the
classifiers are independent, κ = 0. Independence is
not necessarily the best scenario in multiple classi-
fier systems [23]. Even more desirable is “negative
dependence”, κ < 0, whereby classifiers commit
related errors so that when one classifier is wrong,
the other has more than random chance of being
correct.
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Fig. 4. A kappa-error diagram for the two ensembles: classical
bagging and bagging with a random linear oracle

On the y-axis of a kappa-error diagram is the
averaged individual error of classifiers D1 and D2,
E1,2 = E1+E2

2
. As small values of κ indicate better

diversity and small values of E1,2 indicate better ac-
curacy, the most desirable pairs of classifiers will lie
in the bottom left corner. Figure 4 shows the kappa-
error diagram for the two ensembles. The cluster of
55 points corresponding to all pairs in the bagging
ensemble is higher than the cluster corresponding
to the ensemble with the oracle. The individual
accuracy of the members is markedly better for the
ensemble with the oracle. Also, as expected, the
cluster for the ensemble with the oracle is more to
the left, showing lower kappa, hence better diversity.
It is worth mentioning that bagging is known to
produce ensembles with relatively low diversity, this
is why the values of kappa are close to 1. The
situation is further aggravated by choosing a linear
classifier as the base classifier. Being a stable clas-
sifier that does not vary much with small changes
in the training data, the linear classifier is not well
suited for bagging. We chose it here for illustration
purposes only. The averaged diversity kappa across
all pairs of classifiers for the bagging ensemble was
0.9376 while for the ensemble with the oracle, it
was 0.8153. Even though this difference between
diversities might look insignificant at a first glance,
it is likely to fetch noticeable improvement on the
ensemble performance when combined with high
individual accuracy of the ensemble members.

The choice of points which determine the position
of the hyperplane is random. In the worst case,
there will be one point or a very small number
of points on one side of the hyperplane and all

the other points will lie together on the other side.
In this case the benefit from the oracle vanishes
as, practically, one classifier is responsible for the
whole training data. Thus the ensemble member
with oracle is reduced to an ordinary ensemble
member, which is not going to cause a big drop
of the overall ensemble accuracy. The small cut-
off of points may not be adequate for training the
corresponding classifier well. However, assuming
that the training set represents well the population of
interest, only a negligible number of points will have
to be labelled by that classifier. Thus the overall
number of errors will not increase dramatically.

The sacrifice made by the oracle-based ensemble
approach is that the training data is split into two, so
one of the subclassifiers in the pair is always trained
on less than half of the training data. This will add
instability to the trained classifier which, however,
transfers into extra diversity in the ensemble. On
the other hand, as only a part of the feature space
is presented to the classifier, the problem may be
easier to solve, therefore requiring a smaller training
sample anyway.

V. EXPERIMENTS

The goal of this experiment is to find out whether
the Random Linear Oracle makes any difference to
the accuracy of standard ensemble methods.

A summary of the 35 data sets from UCI [3] used
in this study is given in Table I. To calculate the
hyperplane, each categorical feature for each data
set was replaced by C binary features where C is
the number of possible categories. For example, a
feature with three categories, ‘a’, ‘b’, and ‘c’ is
represented by three binary features xa, xb and xc,
respectively. If the value for a particular object is
‘c’, then for this object xa = 0, xb = 0, xc = 1.
All numerical features were linearly scaled within
the interval [0, 1] using the minimum and maximum
value in the training data.

Decision trees have been used as the base clas-
sifier. They are invariant with respect to scaling
the features, and also handle categorical features
by multivariate splits. Thus the transformation of
the categorical features into binary and the scaling
of the numerical features were needed only for
the hyperplane and for determining on which side
of it a given point lies. The only exception here
is the Rotation Forest ensemble which relies on
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extracting linear features, hence needs all the data
in a numerical format.

With each dataset, ten 10-fold cross-validations
were carried out using Weka [41]. The ensemble
methods selected for the experiment are listed in
alphabetical order in Table II. All ensemble methods
were run on the same training-testing splits with
and without Random Linear Oracle. The testing
accuracy was recorded for each method on each
data set. In this way, 100 estimates of the testing
accuracy were available for each method and each
dataset, suitable for paired tests as well.

The base classifier model D in all experiments
was a standard decision tree (J48), except for Ran-
dom Forest which uses bespoke randomised trees.
Both pruned and unpruned trees were considered as
there is no consensus as to which strategy is better
for ensembles.

The hyperplane hi was generated by taking a
random pair of points from the training set Ti and
calculating the hyperplane perpendicular to the line
segment between the points and running through the
middle point. In this way we made sure that there
were points on both sides of hi.

A summary of the experimental results is given in
Table III. The ensemble methods are sorted by their
overall ranks. To calculate the rank of a method,
the mean classification accuracies of all methods are
sorted for each dataset. The method with the best
accuracy receives rank 1, the second best receives
rank 2, and so on. If there is a tie, the ranks are
shared. For example, if the second, third and fourth
best accuracies are the same, all three methods
receive rank 3. For each method there are 35 rank
values, one for each dataset. The overall rank of a
method is the averaged rank of this method across
the 35 datasets. The smaller the rank, the better the
method. The overall ranks are also shown in the
table.

Differences between the averaged ranks may be
due to the random oracle but also to the advantages
of the ensemble methods over one another. We
want to find out whether the random oracle has
the desired effect. The Win-Tie-Loss column in
Table III gives the number of datasets for which the
method with the Random Linear Oracle has been
better-same-worse compared to the method without
the oracle. To find out the statistical significance
of the difference, we carry out a sign test on wins,
losses and ties as explained in [33]. If the oracle and

the non-oracle versions of the ensemble methods
are equivalent, each method will be expected to
win on approximately half of the datasets. For
relatively large number of datasets n, the number
of wins follows a normal distribution with mean
n
2

and standard deviation
√
n
2

. The critical value
is nc =

⌈
n
2

+ zα
√
n
2

⌉
, where zα is the z-value

for the specified level of significance α and d·e
denotes ‘ceiling’. Any result where the number of
‘wins’ plus half of the number of the ties is greater
than or equal to nc indicates statistically significant
difference. For α = 0.05 and n = 35 datasets, nc =
d17.5+1.96×

√
35/2e = 24. The methods for which

the random oracle approach leads to statistically
significant improvement are marked with a bullet
in Table III. There is no method where the random
oracle led to significantly worse results.

The results in Table III show a consistent ten-
dency. With no exception, the ensemble method
with the Random Linear Oracle has a total rank
better than the total rank without the oracle.

Of the 19 ensemble methods in total, only Rota-
tion Forest has the number of wins with oracle lower
than the number of losses. Nevertheless the oracle
improves the general performance so that Rotation
Forest with the oracle is ranked higher than without
the oracle. This finding, illogical at first glance, can
be explained by the following argument. The 15
wins have been achieved by a larger margin in the
ranks compared to the 18(17) losses. The sum of
ranks therefore slightly favours the oracle version
of the method.

The Random Linear Oracle by itself is not a
sufficiently viable ensemble heuristic. The two en-
sembles based solely on the oracle, H-P-Ensemble
and H-U-Ensemble (with pruned and unpruned
trees, respectively) have low total ranks. To evaluate
which ensemble methods benefit the most from the
oracle, the column ‘Benefit’ in Table III displays the
gain in rank scores for the 19 ensemble methods.
The length of the bar corresponds to the rank
difference between the version with oracle (‘H-’)
and the standard method (without oracle, ‘N-’). The
two ensemble approaches which benefit the most
are random subspace and bagging. Both are simple
non-incremental approaches to which the random
oracle induces some welcome additional diversity.
The results indicate that ensemble approaches that
are based on engineered diversity, e.g., boosting,
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TABLE I

SUMMARY OF THE 35 UCI DATASETS USED IN THE EXPERIMENT

Data set Classes Objects D C
anneal 6 898 32 6
audiology 24 226 69 0
autos 7 205 10 16
balance-scale 3 625 0 4
breast-cancer 2 286 10 0
cleveland-14-heart 2 303 7 6
credit-rating 2 690 9 6
german-credit 2 1000 13 7
glass 7 214 0 9
heart-statlog 2 270 0 13
hepatitis 2 155 13 6
horse-colic 2 368 16 7
hungarian-14-heart 2 294 7 6
hypothyroid 4 3772 22 7
ionosphere 2 351 0 34
iris 3 150 0 4
kr-vs-kp 2 3196 36 0
labor 2 57 8 8

Data set Classes Objects D C
letter 26 20000 0 16
lymphography 4 148 15 3
mushroom 2 8124 22 0
pima-diabetes 2 768 0 8
primary-tumor 22 339 17 0
segment 7 2310 0 19
sick 2 3772 22 7
sonar 2 208 0 60
soybean 19 683 35 0
splice 3 3190 60 0
vehicle 4 846 0 18
vote 2 435 16 0
vowel-context 11 990 2 10
vowel-nocontext 11 990 0 10
waveform 3 5000 0 40
wisconsin-bc 2 699 0 9
zoo 7 101 16 2

Note: ‘D’ stands for the number of discrete features and ‘C’ for the number of continuous-valued features.

TABLE II

ENSEMBLE METHODS

Name Source Details
AdaBoost.M1 (S) [12] Re-sampling version
AdaBoost.M1 (W) [12] Re-weighting version
Bagging [4] Bootstrap samples
Decorate [27] Incremental method with artificially constructed examples to enhance diversity
Ensemblea – The only ensemble heuristic is the Random Linear Oracle
Multiboost (S) [40] Re-sampling version
Multiboost (W) [40] Re-weighting version
Random Subspace (50%) [15] Random subsets of features, 50% selected for each classifier
Random Subspace (75%) [15] Random subsets of features, 75% selected for each classifier
Random Forestb [5] Ensemble of randomised decision trees
Rotation Forest [32] Random PCA-based sparse rotation of the feature space

Notes: (1) All methods except a and b appears in 4 versions in the experiment: with pruned trees (notation ‘-P-’ is used in the sequel), with

unpruned trees (‘-U-’), with oracle (’H’ for hyperplane) and without oracle (’N’). (2) a The Ensemble method does not have a non-oracle

version, so two versions are considered: H-P-Ensemble and H-U-Ensemble. (3) b Random Forest uses a special unpruned randomised decision

tree, therefore the two versions used here are H-U-Random Forest and N-U-Random Forest. (4) There are 40 ensemble methods altogether.

benefit less, regardless of their rating with respect
to other ensembles. One possible reason for this is
that introducing the oracle upsets the well measured
ensemble construction procedure, and the extra ran-
domisation renders itself redundant. Finally, there
is no clear pattern as to whether the oracle favours
pruned or unpruned trees.

The random linear oracle approach does not in-

crease substantially the computational complexity
of the ensemble methods. In the training stage,
two sub-classifiers need to be trained instead of
one classifier for each ensemble member. However,
each sub-classifier only uses part of the training
data Ti. If the data size is a factor in the training
complexity, then the random oracle may, in fact, be
faster to train. In the classification stage, calculation
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TABLE III

UCI DATA: ENSEMBLE METHODS WITH AND WITHOUT RANDOM LINEAR ORACLE SORTED BY THEIR AVERAGE RANKS.

Total Win-tie
Method Rank -loss Benefit
H-P-Rotation Forest 10.83 15-2-18
H-U-Rotation Forest 11.01 15-3-17
N-P-Rotation Forest 11.16 –
N-U-Rotation Forest 11.70 –
H-U-Rand. Subs. (50%) 15.40 • 26-2-7
H-U-Rand. Subs. (75%) 16.47 • 32-1-2
H-P-MultiBoost (W) 16.49 21-0-14
H-P-MultiBoost (S) 16.87 • 24-1-10
N-P-MultiBoost (W) 17.74 –
H-P-Rand. Subs. (75%) 17.83 • 32-1-2
H-U-Random Forest 18.26 21-1-13
H-P-Rand. Subs. (50%) 18.63 • 25-1-9
H-U-MultiBoost (W) 18.63 • 23-2-10
H-U-MultiBoost (S) 18.80 • 24-0-11
H-P-AdaBoostM1 (S) 19.20 22-2-11
N-P-MultiBoost (S) 19.31 –
H-P-Bagging 20.36 • 30-1-4
H-U-AdaBoostM1 (S) 20.46 23-0-12
H-P-AdaBoostM1 (W) 20.54 20-0-15
N-U-MultiBoost (W) 20.61 –

Total Win-tie
Method Rank -loss Benefit
N-U-Rand. Subs. (50%) 20.74 –
N-P-AdaBoostM1 (W) 21.07 –
N-P-AdaBoostM1 (S) 21.20 –
N-U-MultiBoost (S) 21.30 –
H-U-Bagging 21.41 • 28-1-6
N-U-Random Forest 21.44 –
H-U-AdaBoostM1 (W) 21.47 20-0-15
N-U-AdaBoostM1 (W) 22.13 –
N-U-AdaBoostM1 (S) 22.79 –
N-P-Rand. Subs. (50%) 23.29 –
H-P-Decorate 23.30 19-1-15
N-P-Decorate 23.80 –
H-P-Ensemble 24.66 N/A
H-U-Decorate 25.10 • 25-2-8
H-U-Ensemble 26.63 N/A
N-P-Bagging 26.96 –
N-P-Rand. Subs. (75%) 27.69 –
N-U-Bagging 28.04 –
N-U-Decorate 28.06 –
N-U-Rand. Subs. (75%) 28.63 –

Notes: ‘H’ (for hyperplane) indicates that the oracle is present; ‘N’ indicates the standard version without the oracle; ‘-P-’ is for ensemble

with pruned trees and ‘-U-’ is for ensembles with unpruned trees.

of each classifier’s decision is preceded by a linear
calculation of the score on the hyperplane hi, which
will not cause a great delay. The ensemble size is
the same as the ensemble without the oracle, only
instead of univariate trees, the ensemble consists of
a fixed type of omnivariate trees as discussed above.

VI. FURTHER EXPERIMENTS WITH 7 MEDICAL
DATA SETS

Finally, to verify the above results outside the
UCI data collection we repeated the experiment,
with the same protocol, on seven real medical
data sets explained in Table IV1. This selection
is intended as a sample from a specific class of
data sets characterised by: (1) small number of
true classes, which may or may not correspond to
coherent clusters; (2) moderate number of observa-
tions (up to few hundred); (3) moderate number of
features (typically 5 to 30). Such data sets are often
collected, for example, in clinical medicine for pilot
research studies.

1Available for download from http://www.informatics.

bangor.ac.uk/˜kuncheva/activities/patrec1.html

The results are displayed in Table V. There is
statistically significant differences between all the
ensemble methods (p ≈ 0) by the Friedman’s
ANOVA for the ranks. Since the number of datasets
in this verification experiment is small, consistency
of the results may be expected to drop. All 7-
0-0 patterns Win-Draw-Loss in Table V indicate
statistically significant improvement at p < 0.05 of
the oracle ensemble over the same ensemble model
without the oracle. Patterns 6-0-1 indicate signifi-
cance at p < 0.1. Even for this small number of data
sets, most ensembles with show better performance
with oracle than without oracle. In many cases the
benefit from the oracle (represented by the length
of the black box) is even larger compared to that
with the 35 UCI data sets.

With the exception of H-P-AdaboostM1 (W) and
H-P-Decorate, in all other 17 cases the hyperplane
oracle improves on the ensemble without the oracle.

VII. CONCLUSION

We propose a combined fusion-selection ap-
proach to classifier ensemble design, which we
call Random Linear Oracle. Each classifier in the
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TABLE IV

SUMMARY OF THE 7 REAL MEDICAL DATASETS

Data set Classes Objects D C Comment
Weaning 2 302 0 17 Courtesy of Dr. A.Temelkov, M.D.

Centre of Acute Respiratory Insufficiency,
Alexandrov’s University Hospital, Sofia, Bulgaria

Respiratory 2 85 5 12 Courtesy of Dr. N. Jekova, M.D.
Neonatal Clinic, University Hospital “Maichin Dom”, Sofia, Bulgaria

Laryngeal-1 2 213 0 16 Courtesy of Dr. D. Doskov, M.D.
Phoniatrics Department, University Hospital “Queen Joanna”,
Sofia, Bulgaria

Laryngeal-2 2 692 0 16 Courtesy of Dr. Stefan Hadjitodorov
Central Laboratory of Biomedical Engineering
Bulgarian Academy of Sciences, Sofia, Bulgaria

Laryngeal-3 3 353 0 16 (as Laryngeal 2)
Voice-3 3 238 1 9 (as Laryngeal 1)
Voice-9 9 428 1 9 (as Laryngeal 1)

Note: ‘D’ stands for the number of discrete features and ‘C’ for the number of continuous-valued features.

TABLE V

MEDICAL DATA: ENSEMBLE METHODS WITH AND WITHOUT RANDOM LINEAR ORACLE SORTED BY THEIR AVERAGE RANKS.

Total Win-tie
Method Rank -loss Benefit
H-U-Rand. Subs. (50%) 6.14 6-0-1
H-P-Rand. Subs. (50%) 8.29 7-0-0
H-P-Rotation Forest 8.50 4-0-3
H-U-Rotation Forest 8.57 6-0-1
H-U-Random Forest 9.36 3-1-3
N-U-Random Forest 11.29 –
N-P-Rotation Forest 12.21 –
H-U-MultiBoost (W) 12.93 5-0-2
N-U-Rotation Forest 13.36 –
N-U-Rand. Subs. (50%) 15.00 –
H-P-MultiBoost (S) 16.14 5-0-2
H-P-MultiBoost (W) 16.43 6-0-1
H-U-AdaBoostM1 (W) 16.86 6-0-1
H-P-AdaBoostM1 (S) 17.14 5-0-2
N-U-MultiBoost (W) 18.14 –
N-P-Rand. Subs. (50%) 18.29 –
H-U-Decorate 19.43 5-0-2
H-U-MultiBoost (S) 19.57 3-0-4
N-P-MultiBoost (S) 20.14 –
H-U-Bagging 20.14 6-0-1

Total Win-tie
Method Rank -loss Benefit
N-U-Decorate 20.29 –
H-U-AdaBoostM1 (S) 20.43 4-0-3
H-P-Bagging 21.93 6-0-1
N-U-AdaBoostM1 (S) 22.14 –
N-U-MultiBoost (S) 22.36 –
N-P-AdaBoostM1 (W) 22.43 –
N-P-MultiBoost (W) 22.86 –
H-U-Rand. Subs. (75%) 23.36 7-0-0
N-U-AdaBoostM1 (W) 23.86 –
H-P-Rand. Subs. (75%) 24.50 7-0-0
H-P-AdaBoostM1 (W) 25.43 3-0-4 negative
H-P-Decorate 26.43 3-0-4 zero
N-P-Decorate 26.43 –
N-U-Bagging 27.64 –
N-P-AdaBoostM1 (S) 28.29 –
N-P-Bagging 28.71 –
N-P-Rand. Subs. (75%) 34.71 –
H-P-Ensemble 36.29 –
H-U-Ensemble 37.00 –
N-U-Rand. Subs. (75%) 37.00 –

Notes: ‘H’ (for hyperplane) indicates that the oracle is present; ‘N’ indicates the standard version without the oracle; ‘-P-’ is for ensemble

with pruned trees and ‘-U-’ is for ensembles with unpruned trees.
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ensemble is replaced by a mini-ensemble of a pair
of sub-classifiers with an oracle to choose between
them. The oracle is in the form of a hyperplane,
randomly drawn and fixed for each ensemble mem-
ber. The results with 35 data sets and 20 ensemble
models, each one with and without the oracle, show
that all ensemble methods benefited from the new
approach, albeit in different degrees. The oracle was
most useful for the random subspace and bagging
ensembles. The results were further verified and the
findings were confirmed on seven real medical data
sets.

In this study we chose the simplest random or-
acle: the linear one. There is no reason why we
should stop here. Different split functions may work
better for some ensemble models or data types.
It is also interesting to try a different model of
the base classifier, e.g., Naı̈ve Bayes or a neural
network, again with all ensemble models, with
and without the oracle. The explanation in Section
IV of why random oracle works is not tied up
with either the choice of the split function or the
base classifier model. Hence the proposed fusion-
selection approach is expected to work regardless
of the specific choices.

However, we are cautious to extend our claim
to all types of problems. There are interesting and
complex problems out there which are still a chal-
lenge to pattern recognition and machine learning
communities. For example, KDD competitions have
set a high standard over the years by putting up
such thought-provoking problems. Bespoke meth-
ods have been developed to address large data sizes,
the subtleties of text mining and internet retrieval,
heavily imbalanced classes, etc. These methods may
not work well for more standard data. Our proposed
ensemble method is not meant to address all types
of challenges, and we recognise that it might not
be superior to the same competitors in a different
scenario.
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