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A fuzzy model of heavy metal loadings in Liverpool bay
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Abstract

We design a fuzzy model of the loadings of 10 heavy metals in Liverpool bay. Each metal concentration is associated with a fuzzy
set “contaminated”, defined over the set of 70 sampling sites. The higher the concentration, the higher the degree of membership of
the site. Six overall loading indices are calculated using aggregation connectives between fuzzy sets. The loading indices are then
interpolated and plotted on a map. A visual inspection shows that: (1) product aggregation is most indicative for the locations of
the disposal grounds; (2) mean aggregation reflects sediment movement in the bay well; and (3) maximum aggregation indicates
all highly contaminated sites. The proposed fuzzy model is easy to implement and the results are directly interpretable. 2000
Elsevier Science Ltd. All rights reserved.
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1. Introduction

The dynamic nature of coastal waters presents a sev-
ere challenge to environmental assessment of disposal
activities in near-shore waters. Surface sediments lying
in shallow water act as a primary sink for pollutants
delivered through rivers and groundwater flow and are
most often studied in an attempt to identify and assess
contaminant sources. However, sediments are subjected
to strong oscillating tidal forces resulting in bed load
transport; storms may result in mixing of contaminated
sediment with material from a different source; and
organisms in sediments may re-work deeper consoli-
dated material to the surface layer. The overall effect of
these uncontrollable environmental variables is to
obscure spatial data.

The problem is to find an overall distribution of metal
concentrations (or contamination) given that metals have
different concentration scales and the way of combining
the concentrations is not prescribed. Large data sets are
being collected and stored, awaiting processing and
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analysis. Typically, principal component analysis (PCA)
or cluster analysis is used for such data, possibly because
these techniques are available in most statistical software
packages. The results of both methods are difficult to
interpret, unless the data have favourable structure and
characteristics. Fuzzy set modelling is a straightforward
option for this kind of problem.

We study the loadings of 10 heavy metals in Liver-
pool bay and designloading indicesto represent the
overall metal concentration. Section 2 describes the
environmental problem and the data set. In Section 3 we
briefly introduce fuzzy sets and give the fuzzy aggre-
gation operators used to design six loading indices. The
results are shown and discussed in Section 4 along with
PCA and cluster analysis results.

2. Liverpool bay data

The situation in Liverpool bay is complicated by mul-
tiple sources of contaminants. The bay receives heavy
metals from continuous sources (Mersey and Dee
Estuaries), point sources (offshore disposal ground) and
a higher-than-normal input of some heavy metals
(notably arsenic) through erosion of natural mineral
sources (Camacho-Ibar et al., 1992). Although water cir-
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culation in the bay depends on tides, winds, freshwater
inputs, etc., it has been found that there is a well estab-
lished estuarine-like circulation induced by the low-den-
sity freshwater inputs from the rivers (the Mersey in
particular) and by higher-density sea water from the Irish
Sea (Camacho-Ibar et al., 1992). Low-density water
moves offshore through the surface and high-density
water moves inshore near the bottom. This density-
driven inshore movement of bottom water, coupled with
tidal asymmetry producing stronger flood than ebb tides,
induces a net sediment transport directed east and south-
east towards the Mersey. The combined effect of
environmental factors and multiple sources of contami-
nation is to generate complex and changing patterns in
the distribution of metal contaminants in surface sedi-
ments. The problem from the point of view of environ-
mental management is to develop patterns from metal
data which reflect the current status of sediments. The
effect of metal contamination on the biota in sediments
is complex; exposure of organisms to high levels of more
than one metal introduces further environmental stress.
It is therefore appropriate that an approach to developing
patterns of contaminant distribution should include all
metals. Identification of distribution patterns is therefore
relevant to:

O monitoring the effect of waste disposal in Liverpool
bay;

O locating regions which may have unacceptably high
metal loading;

O detecting changes of loading pattern over the long
term; and

O using metal loading patterns to disclose the sediment
transport regime.

Environmental management is based on yearly analysis
of heavy metals in surface sediments from a sampling
grid approximately 20 km2. Fig. 1 shows the Liverpool

Fig. 1. Liverpool bay area, the disposal ground and the sampling grid.

bay area, the disposal ground and the sampling sites
(stations). Interpretation of the sampled data is limited
by the factors described above and there is a need to
develop a rational protocol whereby a realistic picture
may be produced from spatial data.

The data set in this study consists of the concen-
trations of 10 heavy metals relative to aluminium con-
tent, measured between 14 and 16 September 1988 at
the 70 sites on the sampling grid. The metals are: mer-
cury (Hg), cadmium (Cd), chromium (Cr), copper (Cu),
nickel (Ni), lead (Pb), zinc (Zn), arsenic (As), manga-
nese (Mn) and iron (Fe). The data set is available as an
ASCII file at http://www.bangor.ac.uk/~mas00a/
lb1988.txt. The first two columns are the latitude and
longitude of the sampling sites, and the remaining 10
columns are the metal concentrations in the above order.

The same stations have been sampled every year. A
database has been collected over the period 1986–1993.
Our aim in this pilot study was to develop a mathemat-
ical tool for analysing metal distributions using one data
set. We chose the 1988 data set because a thorough
analysis of the processes in Liverpool bay for the year
1988 can be found elsewhere (Camacho-Ibar, 1991;
Camacho-Ibar et al., 1992). Changes in the metal distri-
bution pattern over the years using the loading indices
proposed in this paper is a topic of our forthcoming
research.

3. Loading indices design by fuzzy aggregation

3.1. Fuzzy sets

Lotfi Zadeh introduced the simple and intuitive con-
cept of a fuzzy set in his seminal paper in 1965 (Zadeh,
1965). Since then fuzzy sets have been applied to a vast
number of areas (Bezdek and Kuncheva, 1999) including
the environmental sciences: soil, forest and air pollution,
meteorology, water resources, etc.

Let U be an ordinary set with elementsu1, …, um. A
fuzzy set Aon U is defined by assigning adegree of
membershipbetween 0 and 1 to eachuiPU, usually with
regard to a linguistic term. For example, letU be the set
of integers from 1 to 100 denoting the age of a person,
and letA be “middle aged”. We can define a (subjective!)
function that assigns to eachui a degree of membership
mA(ui)P[0, 1]. Degree 0 denotes non-membership,
degree 1 full membership, and any other value is partial
membership. A plausible model of “middle aged” will
be obtained by using a function (membership function)
that yields high values between, say, 40 and 55 and
gradually decreases towards the two edges of the scale.
Thus, the degree of membership of 37,mA(37), can be
0.75, and of 82,mA(82)=0.1. A fuzzy set is determined
by its membership function, so the two notions will be
used interchangeably.



163L.I. Kuncheva et al. / Environmental Modelling & Software 15 (2000) 161–167

Let S={ s1, …, s70} be the set of 70 sites in Liverpool
bay. Let A1, …, A10 be fuzzy sets onS, one for each
metal, with membership functions:

mAi
:S→[0, 1], i51, …, 10.

The higher theith metal concentration at sitesj, the
higher the degree of membershipmAi

(sj ). We choose sim-
ple rescaling to devise the 10 membership functions
from data. Letxi(sj) be the concentration of theith metal
measured at sitesj. Then:

mAi
(sj )5

xi(sj )−mink{ xi(sk)}
maxk{ xi(sk)} −mink{ xi(sk)} k=1,…70

. (1)

Fig. 2 plots the membership function of mercury over
the two-dimensional space (sampling ground) spanned
by the 70 sites in Liverpool bay. Referring the plot to
the original geographical problem, we observe a high
concentration of mercury in the area of river estuaries.
The contamination with mercury in that area is higher
than that at the disposal ground (the second highest
peak).

Another way of representing the membership func-
tions (adopted here) is to use colour or a contour plot
and overlay the scatterplot of the sampling sites.

Clearly, the concentration pattern would be the same
if we did not scale the concentration between 0 and 1.
Although individual metal distribution is an interesting
topic on its own, it was argued above that an index of
overall loading (contamination) is needed.

3.2. Fuzzy aggregation connectives

Dubois and Prade (1997) point out that, although
fuzzy membership functions have numerous possible
interpretations, fuzzy mathematics has gone a long way
disregarding fuzzy sets semantics: “The risk is to leave

Fig. 2. Hg membership function for the fuzzy set “contaminated”.

the user with no guidelines about how to apply fuzzy set
theory…” They distill three main semantics: similarity,
preference and uncertainty. The interpretation of the
fuzzy sets used here fits best in the second category:
preference (in a broad sense), because the membership
functions do not measure a similarity to some “ideal”
prototypes nor do they express any type of uncertainty.
For example, weprefer (to call “contaminated”) a site
with degree of membership 0.7 to a site with degree 0.4.
Taking this interpretation, a fuzzy decision-analysis
approach seems reasonable. Fuzzy aggregation connec-
tives (aggregation operators) will be used to define over-
all loading indices.

An m-placeaggregation operatorA is defined as:

A:[0: 1]m→[0, 1],

satisfying the following properties.

1. Limit conditions:
A(0, 0,…, 0)=0, A(1, 1,…, 1)=1.

2. Commutativity:
A(a1, a2, …, am)=A(b1, b2, …, bm), where b1, …, bm

is any permutation of a1, a2,…, am, aiP[0, 1],
i=1, …,m.

3. Monotonicity:
A(a1, a2, …, am)$A(b1, b2, …, bm), for any
a1, a2, …, am, b1, …, bmP[0, 1], such that ai$bi,
∀i=1, …,m.

There are a great variety of fuzzy connectives and aggre-
gation operators (Bloch, 1996; Dubois and Prade, 1985;
Grabisch, 1995b; Yager and Filev, 1994). Since this is
a pilot study, here we use perhaps the simplest six aggre-
gation operators.

1. Pessimistic-type aggregation:
O Minimum

A1(a1, a2, …, am)=min{a1, a2, …, am}.
O Product

A2(a1, a2, …, am)=a1·a2·…·am.
O Geometric mean

A3(a1, a2, …, am)=(a1·a2·…·am)1/m.
2. Optimistic-type aggregation:

O Maximum
A4(a1, a2, …, am)=max{a1, a2, …, am}.

3. Indifferent-type aggregation:
O Arithmetic mean

A5(a1, …, am)=
1
m

(a1+…+am).

O “Competition jury” — this is an operator where we
discard the highest and the lowest values from the
set a1, a2, …, am and average the remainingm22
values:

A6(a1, a2, …, am)=
1

m−2
(a1+…+am2maxk ak2

mink ak).



164 L.I. Kuncheva et al. / Environmental Modelling & Software 15 (2000) 161–167

Table 1
Correlations between the metal concentrations (×100)

Cd Cr Cu Ni Pb Zn As Mn Fe

Hg 0 216 223 234 231 223 227 231 227
Cd 55 54 63 71 70 51 55 48
Cr 77 83 76 85 70 64 87
Cu 70 77 80 60 57 78
Ni 78 84 65 73 79
Pb 95 81 82 78
Zn 88 88 88
As 90 87
Mn 76

Replacingai with µAi
(sj ), each of these six aggregation

operators defines aloading indexas a fuzzy set onS.
The indices are denoted respectively LI1, …, LI6.

4. Results

Table 1 shows the correlation coefficients (×100)
between the metal concentrations.

Cluster analysis is often used in environmental studies
to find spatial areas corresponding to values “low”,
“medium” and “high” of a certain parameter indicative
of the concentration (Markus and McBratney, 1996).
When this parameter is based on more than one variable,
e.g., contamination with heavy metals, clustering might
not be appropriate. Fig. 3 shows the difference between
“favourable data” (where the clusters correspond to
“low” and “high” contamination) and “unfavourable
data” (where such correspondence does not exist).
Shown on the left plot are two clusters found by the hard
c-means (HCM) clustering procedure for zinc (Zn) and
lead (Pb) from our data. Their concentrations correlate
well (0.95), so the two cluster centres can be labelled
“low” and “high” as shown. The plot on the right shows
the results from the same procedure applied to mercury
(Hg) and lead (Pb). The metal concentrations have a
negative correlation coefficient (20.31), so the cluster

Fig. 3. Scatterplot of “favourable” and “unfavourable” data.

centres (circled) do not correspond to “low” and “high”
in any order.

When more than two components are involved such
inconsistencies are more difficult to resolve and likely
to be obscured, and the result can be misinterpreted.

As Table 1 shows, most of the correlations are posi-
tive (due to high concentrations around the waste dis-
posal ground and low elsewhere) except for mercury,
and therefore cluster analysis can be expected to produce
sensible results. For three suspected clusters the hard c-
means algorithm on the scaled data [Eq. (1)] found the
centres shown in Table 2.

All centre components but the first one (Hg) are
ordered so that the three clusters correspond to “high”,
“low” and “medium”, respectively. Fig. 4 shows the
result as the spatial distribution of loading on the geo-
graphical sampling grid. Dark regions correspond to high
metal loading, and bright regions to low loading. Hard
c-means clustering uses random initialization, hence dif-
ferent sets of centres can be obtained. The two plots
show the results from clustering the original metal con-
centrations (left) and the scaled data (right). Clustering
results are influenced by data transformation (Duda and
Hart, 1973), which is demonstrated by the differences in
the two plots. Then, should we scale the data or not?
If not, the metals with concentrations that are orders of

Table 2
Three cluster centres from one HCM run

Cluster 1 Cluster 2 Cluster 3

Hg 0.1259 0.3011 0.2448
Cd 0.4159 0.0810 0.1679
Cr 0.7228 0.1739 0.5275
Cu 0.6875 0.0663 0.3147
Ni 0.7823 0.1846 0.4810
Pb 0.5663 0.0322 0.1836
Zn 0.5707 0.0674 0.2413
As 0.4846 0.0252 0.1312
Mn 0.4184 0.0092 0.0863
Fe 0.7141 0.1339 0.3602
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Fig. 4. Overall distribution of the 10 heavy metals in Liverpool bay calculated by hard c-means clustering.

magnitude higher than the others will dominate and
determine the clustering result. On the other hand, if we
decide to scale the data, we need to choose a scaling
method [e.g., taking the logarithm, z-normalization, sca-
ling as in Eq. (1), etc.]. Each of these methods might
lead to a different clustering result.

Fuzzy c-means has also been used for clustering pur-
poses in spatial data analysis (Markus and McBratney,
1996). It is debatable, however, what the added value of
using fuzzy c-means is over that of the hard c-means.

Principal component analysis (PCA) gives results that
are not easily interpretable in the general case. Here, the
variance of most metals is along the same axis: high
values at the disposal site, which are an order of magni-
tude higher than the values elsewhere. In this case the
first principal component should follow the pattern found
by the HCM clustering. Fig. 5 shows the distribution
defined by the first and the second principal components.
While the first component might correspond to metal
loading, the second component is not easy to name. The
top two plots show the results with the original data, and
the bottom two plots with the scaled data. As the figure
shows, similarly to clustering, PCA is sensitive to the
type of data scaling. The difference is especially clear
in the second principal component which makes its
interpretation even more obscure.

Contour maps of the loading indices LI1, …, LI6 for
the 10 fuzzy setsA1, …, A10 are plotted in Fig. 6. The
horizontal axis is longitude between24.00° and23.00°
(west of Greenwich); the vertical axis is 53° and decimal
minutes north.

The LI results identify clearly a number of important
patterns in the spatial data. The feature common to all
six methods is the area of low metal contamination in
the north west (top left) section of the sampling grid.
The product method of calculation efficiently resolves
the disposal ground whilst most of the other methods
identify a residual south easterly movement of material
from the disposal ground towards the estuary mouth. The
smaller high area in the extreme eastern sector (seen
most clearly in the Maximum plot) identifies a widening

area at the estuary mouth where there is net deposition
of suspended material delivered from industrial sources
higher up the River Mersey.

The difficulty in assessing results such as the ones in
this study comes from the fact that there is no benchmark
against which the new solution can be matched. The
plausibility of the results can be judged only by eye. Yet,
the expert’s appreciation will be biased by their attitude.
Product aggregationclearly indicates where the highest
contamination is. This loading index may be favoured
by the user responsible for waste disposal.Maximum
aggregationshows all contaminated sites even if the
contamination is due to just one of the components. This
loading index may be picked by the user concerned
about, say, the fish diversity in the region. The bottom
line is that there is notrue loading distribution nor is
there a single one that can be “useful” from all points
of view. What the proposed fuzzy approach offers is a
collection of indices, each one with comprehensible
interpretation, thereby giving the user a chance to make
an educated choice. In this respect the fuzzy sets
approach to spatial data analysis has an advantage over
clustering and PCA where the interpretation is not
straightforward and the results are at the mercy of the
data.

An Index of Toxicity can also be designed by weight-
ing the fuzzy setsA1, …, A10 with respect to the toxicity
of the metals and then applying a proper fuzzy aggre-
gation, if the relative toxicities are known. There are
many fuzzy set connectives that can incorporate individ-
ual weights for the fuzzy sets but the problem here is
more complex. Different combinations of metals could
have different implications on the biota. Besides, these
implications could be specific for different groups of
species. Therefore, a more complex coefficient scheme
has to be considered where each combination of metals
has its own weight. For example, for Pb, Mn and Hg
the aggregation rule should be able to account for seven
toxicity coefficients: for (Pb), (Mn), (Hg), (Pb, Mn), (Pb,
Hg), (Mn, Hg) and (Pb, Mn, Hg). An apt fuzzy model
for this type of weighted aggregation is the fuzzy integral
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Fig. 5. Overall distribution of the 10 heavy metals in Liverpool bay by the first and second principal components of PCA.

Fig. 6. Overall distribution of the 10 heavy metals in Liverpool bay calculated by the six loading indices.

(cf. Grabisch, 1995a). However, determining a set of
coefficients that assess the joint effect of two or more
metals on a variety of species is not a trivial task.

5. Conclusions

We show how fuzzy set theoretic aggregation oper-
ators can be used for modelling the spatial distribution

of a set of variables in environmental problems, thereby
providing the non-mathematical user with a simple and
effective modelling tool. We applied six different fuzzy
aggregation techniques to a set of heavy metal concen-
trations sampled from Liverpool bay, and assessed the
results (geographical scatterplots of metal loading) visu-
ally. Unlike PCA and HCM, fuzzy aggregation offers a
variety of plots with different information in them. On
the two edges of the scale are the product aggregation,
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which resolves the disposal ground clearly, and the
maximum aggregation, which identifies all possible sites
with high contamination. The main advantage of our
fuzzy model over PCA and clustering is that the results
are directly interpretable in the domain context.
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