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Abstract—We aim to dispel the blind faith in theoretical
criteria for optimisation of the edited nearest neighbour classifier
and its version called the Voronoi classifier. Three criteria
from past and recent literature are considered: two bounds
using Vapnik-Chervonenkis (VC) dimension and a probabilistic
criterion derived by a Bayesian approach. We demonstrate the
shortcomings of these criteria for selecting the best reference
set, and summarise alternative empirical criteria found in the
literature.

I. INTRODUCTION

The nearest neighbour classifier is among the most intuitive,
accurate, widely acclaimed and thoroughly studied classifiers.
It has justly been nominated among the top ten algorithms in
data mining [1].

Theoretical bounds on the error of the nearest neighbour
classification rule (1-nn) have been continually developed and
honed ever since the formal introduction of the rule [2], [3].
In parallel, a large body of research has followed the path of
data editing for the nearest neighbour rule [4]–[6]. It will not
be an exaggeration to say that there are over a hundred editing
methods where prototypes are selected from the given training
set [7], and a matching number of methods for prototype
extraction (positioning of the prototypes in the data space, not
necessarily as realistic data points) [8].

How to choose an editing method for the data set at hand?
While domain knowledge, complexity-based measures and
other data characteristics have been found useful in recom-
mending the type of instance selection method [9], [10], the
ultimate pair of criteria remain the classification accuracy and
the data reduction rate. The hope that theory will guide the
choice of editing method seems to be overly optimistic thus far
as the overwhelming majority of such methods are heuristic-
based.

Here we are interested in understanding better the reason
behind the gap between the rich 1-nn theory and its limited
impact on the design of methodology and algorithms for the
edited 1-nn. Two fundamental questions need to be answered:
1. What insights do the theoretical results give us about the
behaviour of the edited 1-nn? and 2. How can we use these
insights to build better edited 1-nn classifiers? We argue that
general results are of limited use for guiding the practical
design of the edited 1-nn and propose a practical solution. The

rest of the paper is organised as follows. Section II introduces
the three theoretical bounds and criteria for the edited 1-nn and
a version thereof called the Voronoi classifier. We present our
argument about the weaknesses of these results in Section III.
Section IV brings in alternative empirical criteria for the edited
1-nn and the Voronoi classifier, and Section V states our
conclusions.

II. THEORETICAL BOUNDS AND CRITERIA

Given is a labelled data set of N instances X = {x1,
. . . ,xN}, called the reference set, where instances xi live
in some n-dimensional space Rn. The corresponding set of
labels is Y = {y1, . . . , yN}, where label yi takes values in the
set Ω = {ω1, . . . , ωc}. Assuming a distance is specified for
Rn, the nearest neighbour classifier (1-nn) assigns an instance
to the class of its nearest neighbour.

A. Bounds on the 1nn error

Asymptotic bounds of the 1-nn rule have been proven at
its conception [3]. Denote by P∗ the Bayes error for a given
classification problem, and by P , the nearest neighbour error.
Then the following holds

P∗ ≤ P ≤ 2P∗ −
c

c− 1
P 2
∗ .

The bound is proven for sample size N → inf .
It is more interesting to find out how 1-nn and the edited

1-nn behave when the data set is of finite cardinality. Nock
and Sebban [11] derive a bound on the 1-nn error for a
fixed reference set of cardinality N . They add a penalty term
to the right-hand side of the above inequality reflecting the
fact that the sample X is fixed. This term depends on the
maximum variation of the likelihood between an element of
X and its nearest neighbour (under some smoothness assump-
tions). Fukunaga and Hummels [12] estimate theoretically the
expected bias of the finite-sample 1-nn as a product of two
terms. The first term depends on the data size N and the
feature space dimensionality n. Larger n increases the bias,
while larger N decreases it. The second term accounts for the
probability distributions but is dominated by the parameters
of the metric used in the space. Their analysis concludes that,
for low dimensionality n, increasing N is efficient in reducing
the expected bias but for large n this is not the case. The



expression for the 1-nn bias is only of theoretical interest
because it assumes knowledge of the probability densities and
requires high-dimensional integration.

B. Bounds on the edited 1-nn error

Methods for prototype selection and prototype extraction
emerged early on, even without the prospect of large data.
The task of a prototype selection method is to identify
the minimum subset S of X with maximum classification
accuracy for unseen data. Wilson [13] proposes to remove
all examples which are misclassified by their three nearest
neighbours, which clears up noise in the data, and obeys the
following desirable asymptotic property. The nearest neigh-
bour x′ of instance x in the edited reference set S converges
in probability to x when N → inf . This ensures that the edited
1-nn does not suffer any loss of accuracy asymptotically.

Estimating bounds on the finite-sample edited versions of 1-
nn is more difficult. Denote by M be the number prototypes
in the reference set selected from X (by any methodology
or randomly sampled). Using the Vapnik-Chervonenkis (VC)
dimension [14], Devroye et al. [15] and Devroye and Wag-
ner [16] prove that for all ε > 0 and all distributions,

Pr
{
|PN − P̂N,M | ≥ ε

}
≤

8

(
Ne

n+ 1

)(n+1)M(M−1)

× exp

{
−Nε2

32

}
, (1)

where PN is the classification error of 1-nn on a data set
of N instances, and P̂N,M is the classification error on the
training data X using the M prototypes ( P̂N,M is termed
sometimes ‘apparent error rate’ or ‘empirical risk’). Equation
(1) ascertains that the way to reduce the discrepancy between
the true error PN and P̂N,M is increasing N .

C. Structural risk minimisation for the edited 1-nn

Karaçalı and Krim [17] give a proof that the VC dimension
of the 1-nn classifier with M reference instances is exactly M .
The VC dimension of a classifier C is the maximum number
of instances that can be shattered by this classifier.1 If the
cardinality of the set is increased even by one instance, there
exists a label assignment such that C will fail to label all
instances correctly, for any parameter combination and any
training of C.

Clearly, the 1-nn classifier with a reference set of M
instances can label correctly these M instances. The proof
is based on engineering labels for any set of M + 1 instances
so that no selection of a reference set of M instances will
label all M + 1 instances correctly.

Consider a family of labelling functions F . The structural
risk minimisation (SRM) principle suggests that in order to
improve the generalisation performance of a classifier from
F , trained on a data set with N instances, the upper bound on
the risk should be minimised. With probability at least 1− δ,

1Instances are said to be shattered by a classifier model C with parameter
set θ if, for any labelling of the instances, there exists a set of parameters θ∗
such that C labels all instances correctly.

the upper bound of the risk for a function f ∈ F satisfies the
following inequality [14]

R(f) ≤ Remp(f) +

√
h log2

(
2N
h + 1

)
− log2

(
δ
4

)
N

, (2)

where Remp(f) is the empirical risk, estimated as the classi-
fication error of f on the training set.

Applied to the edited 1-nn for a training set X of size N ,
SRM can be implemented in the following steps:

1) Create N families of functions: F1, F2, . . . , FN . Family
Fi contains all 1-nn classifiers with a reference set of
i instances selected from X . By the above argument,
these families are arranged in the way of increasing VC-
dimension.

2) For each i, find the function f∗i ∈ Fi which minimises
the empirical risk.

3) Select as the final reference set the one corresponding
to the smallest upper bound, i.e.,

f∗ = arg min
i
R(f∗i ) .

D. A Bayesian view on prototype selection

Taking a Bayesian view on the prototype selection prob-
lem, Ferrandiz and Boullé [18] propose a prototype selection
method called Eva. Their base classifier differs from the
standard edited 1-nn in that each prototype is relabelled to
the majority class in its Voronoi cell. We will refer to this
classifier as the Voronoi classifier. The ‘model’ consists of the
prototype set and the respective labels. Denote by Nm the
number of instances from X in the Voronoi cell of prototype
m, m = 1, . . . ,M . Among the Nm instances, denote by N j

m

the number of instances from class j. Under the assumption
of uniform random priors, the likelihood of the model is
maximised by choosing a set of prototypes which minimises
the following expression

C = log(N) + log

(
N +M − 1

M

)

+

M∑
m=1

[
log

(
Nm + c− 1

c− 1

)
+ log

Nm!

N1
m!N2

m! . . . N c
m!

]
. (3)

As with the other approaches, the criterion consists of a term
accounting for the sizes of the original and edited data (N
and M ), and another, which accounts for the data distribution.
Curiously, neither term is based on the training error rate.
Instead, the data-distribution term accounts for the entropy
in the Voronoi cells. Unfortunately, the criterion may prove
computationally intractable due to the large values of the
binomial coefficients even for small M and c.

III. HOW USEFUL ARE THE BOUNDS AND CRITERIA?

The more general the bound, the wider is its validity. For
example, distribution-free bounds apply to all problems. But
by the same token, generality may hamper the usefulness
for a specific problem. As always, a balance must be sought
between generality and specificity.



A. Bounds on the edited 1-nn error (1)

Unfortunately, by the author’s own admission [16], p 209,
the bound can be useless even for moderate N and small c, n
and M . To be of any relevance, the RHS of (1) must be smaller
than one. Denote the RHS by β. Let us fix the size of the
reference set to M = 2 prototypes, the number of classes to
c = 2 and the dimensionality to d = 1. Figure 1 shows log(β)
as a function of the training set size N for several values of
the discrepancy term ε.
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Fig. 1. Logarithm of the RHS (β) of (1) as a function of the sample size N
(n = 1, M = 2). The displayed values at log(β) = 0 are the minimum N
beyond which the bound may become useful.

The example shows that, for the bound to be of any use
(smaller than 1), an impractically large data set is needed even
for a one-dimensional space and two prototypes. Hence, this
bound is not useful for guiding the design of data editing
methods.

B. The SRM bound (2)

The practical merit of a bound depends on how tight the
bound is and whether or not it correlates with the behaviour
of the generalisation error.

Figure 2 plots the second term of the right-hand side
(RHS) of (2), called the ‘VC confidence’. For the edited 1-
nn classifier, h = M , where M is the size of the reference
set. This plot will be the bound on R(f) provided that the
empirical risk Remp(f) is zero.2

The curve is not affected much by the value of δ. The curves
for δ = {0.001, 0.01, 0, 05} practically coincide. The curve
quickly shoots to above 1, indicating that the bound may be
too loose to be useful.

C. The probabilistic criterion (3)

The computational infeasibility of criterion C for large
N and M is only one of the problems. More importantly,
its relationship with the generalisation error may be far too
reliant on the arbitrary choice of the prior probabilities as
demonstrated by the following argument.

2Reference sets for which Remp(f) = 0 are called ‘consistent’.
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Fig. 2. The bound on R(f) for the edited 1-nn and consistent reference sets,
N = 1000 instances and δ = 0.001.

Suppose that the training set X is sampled from the distri-
bution of the problem. A model QM =< Z,M > consists of a
set Z of M prototypes, Z ⊆ X together with their class labels
ζ = {ζ1, . . . , ζM}. The class label ζi of prototype zi ∈ Z is
obtained as the majority class of the instances from X falling
in z’s Voronoi cell. The class of the model is the value of
M (the cardinality of the prototype set) which also happens
to be the VC-dimension of the Voronoi classifier as explained
above. This parameter governs the balance between under-
leaning and overfitting, and is therefore crucial for the success
of the classifier. Once M is chosen, the concrete realisation
of the model is the selection of Z from X . As the overfitting
issue is accounted for through M , the task is to select the most
accurate model of this class as evaluated on the training set.

Formally, we want to choose a model class and then a
realisation, which maximise the likelihood of the model given
the data set, that is:

P (QM |X) =
P (X|QM )P (QM )

P (X)
.

Note that P (X) does not have any effect on the choice of the
model parameters, hence it can be ignored to give

P (QM |X) ∝ P (X|QM )P (QM ) (4)

Thus the function to be maximised is a product of the
likelihood of X , given QM and the prior for QM . With
the Bayesian approach, we have the freedom to choose
interpretations for both terms and specify conditions under
which these interpretations hold. We can choose to think of
P (X|QM ) as the classification accuracy of 1-nn with the set of
labelled prototypes QM estimated on X . This is a reasonable
interpretation because the likelihood of the model containing
the whole data set itself (QM =< X,N >) will be maximum.
QM consists of two parameters: the model class M and the

prototype set Z. The prior for the model is

P (QM ) = P (Z,M) = P (Z|M)P (M).

Ferrandiz and Boullé [18] take P (M) to be uniform

P (M) =
1

N
, M = 1, . . . , N.



This is called a non-informative prior and does not have any
effect on the model choice. Knowing the problem, however,
we know that the curve of the testing accuracy as a function of
M is likely to have a “belly” shape. Small values of M lead
to under-training while large values of M lead to overfitting,
with M = N giving a zero resubstitution error but learning
all the noise. Then it is more intuitive to choose a binomial
distribution for M , B(N, p):

P (M) =

(
N

M

)
pM (1− p)(N−M), M = 1, . . . , N,

for some probability of success p. In absence of a further
insight, we can set p = 0.5, giving

P (M) =
1

2N

(
N

M

)
, M = 1, . . . , N.

The prior P (Z|M) is more difficult to rationalise. Any set
of prototypes may turn out to be the best. Therefore, a uniform
prior probability is justified. In our set up, there are

(
N
M

)
ways

to select M instances out of a set of N , hence

P (Z|M) =
1(
N
M

) .
Based on the above, consider the following two cases

1) Uniform priors for M and for Z, given M [18].
2) A binomial prior for M and a uniform prior for Z, given

M .
Case 1.: If both priors are uniform,

P (Z,M) =
1

N
(
N
M

) .
This means that reference sets of relatively smaller or rela-
tively larger cardinality will have higher likelihood of being
chosen as solutions for the same likelihood P (X|QM ) com-
pared to sets of medium cardinality, which sounds counter-
intuitive.

Case 2.: If M ∼ B(N, 0.5),

P (Z,M) =
1

2N
.

As this prior does not depend on M , it can be ignored in (4),
leaving.

P (QM |X) ∝ P (X|QM ).

This expression is useless as a criterion because it will always
favour the trivial model QM =< X,M∗ >, where M∗ is the
cardinality of the smallest consistent set.

Of course we can engineer a prior which will place more
weight on the medium values of M so as to reflect the
anticipated shape of the generalisation error as a function
of M . The problem, however, is that this (arbitrary) choice
of the model prior and its parameters will determine the
optimal value of M . While this will be a criterion dressed
in a theoretical guise, it will be no different to a criterion
where the trade-off between under- and over-training is set up
by eye or estimated by a cross-validation protocol.

D. A toy example

Consider a toy example of two classes distributed in a
4 × 4 checker board pattern as shown in Figure 3. Eighteen
instances are sampled randomly from a uniform distribution
in the unit square as the data set X along with their labels
(N = 18). All 218 − 1 = 262144 possible non-empty subsets
of X were generated with a view to explore the criteria values
as predictors of the errors of the edited 1-nn and the Voronoi
classifier.

Figure 3 shows the classification boundaries and the error
rates for the best reference sets from X for the edited 1-nn
(10 prototypes) and the Voronoi classifier (11 prototypes). The
Voronoi classifier has a slightly lower error because of its
ability to relabel the prototypes as the majority of instances in
their respective Voronoi cells. The difference from the original
labelling is indicated by a square marker.
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Fig. 3. The classification boundaries for the edited 1-nn (a) and the Voronoi
classifier (b) for the toy example data set. The prototype relabelled into the
opposite class for the Voronoi classifier is marked with a square.

The top two rows of plots in Figure 4 show the best training
error for M = 1, . . . , 18, the best testing error (not necessarily
corresponding to the best training error). The shaded plots in
the bottom row show the respective bound/criterion curves. It
can be seen that the criterion/bound do not correlate with the
testing error.

IV. EMPIRICAL CRITERIA FOR THE EDITED 1-NN

The theoretical bounds reviewed above consist of two terms,
either additive or multiplicative. One of the terms accounts for
the sizes of the original and the edited data, and the other one,
for the estimated error.

A. Leave-one-out error estimate

The term accounting for the data sizes is meant to guard
against potential overfitting reflected in the low training error
rate. However, the error term could be calculated on a separate
validation set or through cross-validation, which makes it a
proxy for the generalisation error itself. This renders the size-
penalising term redundant. If the data size does not allow for
a separate validation set, the leave-one-out (LOO) protocol
offers a reasonable alternative [19]–[26]. In this case, every
training instance is used to compute the error, but those in the
reference set, z ∈ Z, are labelled using Z \ {z}.



B. Weighted additive penalty

A simple alternative to the theoretical criterion for choosing
an edited 1-nn or the Voronoi classifier can be devised using
an additive weighted penalty term

Cwp = (1− α)P̂ (QM ) + α
M

N
, (5)

where 0 < α < 1.
The weighted additive penalty criterion has been used

for 1-nn editing through random search [27], [28], genetic
algorithms [19], tabu search [29], memetic algorithms [22],
[30], cooperative coevolution [31], ensemble-based instance
selection [32], [33] or meta-learning [34]. The only difference
between these approaches is the value of α. The most com-
monly used value is α = 0.5, e.g., [20]–[26]), even though
earlier proposals considered α values lower than 0.1, putting
more emphasis on accuracy [19], [29], [35]. Depending on
the specific purpose of the model, values between 0.1 and
0.5 have also been considered [21], [31], [32], [36]. In fact,
an exhaustive empirical analysis on the effect of this value
is still missing in the literature, since, with few exceptions
[10], [37], α is set by eye of through preliminary, non-reported
experiments . Likewise, there is no insight as to how different
data types may benefit from different α values.

Curiously, the penalty criterion is seldom used with the
training error. Typically a penalty term is added to the LOO
error.

C. Results for the toy example

To illustrate the behaviour of the empirical criteria, we use
again the toy example. In addition to the training error and the
“true” best generalisation error for a given M , we calculated
the leave-one-out (LOO) error. Based on the minimum LOO
error, we chose the corresponding model (M ) and report the
best error for this model class. The third row of plots in
Figures 4 displays the LOO error for the 1-nn and the Voronoi
classifier. The best solution according to the LOO error is
circled. The results indicate that LOO error is a useful criterion
for determining the cardinality of the reference set M as it
points at a near-optimal classifier.

Finally, the weighted penalty criterion was put to the test.
We examined an array of values for α in equation (5). The
results are reported in Table I. We calculated criterion (5) with
the training error as the first term (columns M and P ), and
then with the LOO error as the first term (columns M∗ and
O∗). The top row is calculated for α = 0, which is exactly
the LOO criterion.

The table reveals that:

• The LOO criterion is sufficiently good on its own. Varying
α did not offer any improvement for this example. This is
not to say that no improvement can be achieved by using
the weighted penalty criterion. However, the price to pay for
a possible improvement is the fine-tuning of α, possibly by
an internal cross-validation experiment, adding to the already
expensive LOO calculation.
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Fig. 4. Best training error, best testing error, the leave-one-out error estimate
and the bound/criterion curves for the 1-nn and the Voronoi classifier on the
toy example. The best solution corresponding to the minimum-cardinality set
with the lowest LOO error is indicated with a circle.

TABLE I
TESTING ERROR (%) FOR THE BEST REFERENCE SETS FOR α FOUND

THROUGH THE TWO CRITERIA FOR THE TOY EXAMPLE.

1-nn (true best 34.2) Voronoi (true best 32.2)
α M P M∗ P ∗ M P M∗ P ∗

0.0 – – 7 35.95 – – 8 32.90
0.1 9 34.90 7 35.95 9 33.00 8 32.90
0.2 9 34.90 7 35.95 9 33.00 8 32.90
0.4 7 35.95 4 39.40 4 37.65 2 43.10
0.5 2 43.60 1 49.25 3 41.85 2 43.10
0.6 2 43.60 1 49.25 2 43.10 2 43.10
0.8 1 49.25 1 49.25 2 43.10 2 43.10
0.9 1 49.25 1 49.25 1 49.25 1 49.25

Notes: M and P are calculated when the training error is taken as the error
term in (5); M∗ and P ∗ are calculated when the LOO error is taken as the
error term in (5). The row for α = 0 is the LOO criterion.

• Due to its ability to filter noise by relabelling prototypes, the
Voronoi classifier (a variant of the edited 1-nn) had an edge
over the baseline edited 1-nn in our example. The training of
the classifier is slightly different but the operation is exactly
the 1-nn classifier, hence it does not bear any extra cost.

V. CONCLUSION

This study looked at existing theoretical results related to
the edited nearest neighbour classifier and their practical use.
We found that the existing bounds and criteria are either too



loose to be useful or unrelated to the generalisation error of
the data at hand. Our argument is illustrated on a toy problem.
Instead of drawing upon the theoretical bounds and criteria
when designing 1-nn editing methods, we recommend using
empirical criteria. In particular, the leave-one-out estimate of
the error using a given reference set seems to be justly chosen
in many works.

As a byproduct, we showed the advantage of a variant of
1-nn, called the Voronoi classifier, over the baseline model.

Given the wealth of literature on the 1-nn theory and
applications, the hope is that future research will bring theory
and practice closer together, especially in the context of large
data. Large data offers interesting prospectives. For example,
instead of running internal cross-validation for evaluating α or
M , independent testing sets could be sampled.

The code and data to reproduce this work are available at
https://github.com/mikelgalar/Kuncheva Galar ICDM2015.
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