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Abstract – Cluster ensembles are deemed to be a robust 
and accurate alternative to single clustering runs. 24 
methods for designing cluster ensembles are compared 
here using 24 data sets, both artificial and real. 
Adjusted Rand index and classification accuracy are 
used as accuracy criteria with respect to a known 
partition assumed to be the “true” one. The data sets are 
randomly chosen to represent medium-size problems 
arising within a variety of biomedical domains. 
Ensemble size of 10 was considered. It was found that 
there is a significant difference among the compared 
methods (Friedman’s Two Way ANOVA). The best 
ensembles were based on k-means individual clusterers. 
Consensus functions interpreting the consensus matrix 
of the ensemble as data, rather than similarity, were 
found to be significantly better than the traditional 
alternatives, including CSPA and HGPA.  
 
Keywords: Clustering, Cluster ensembles, Consensus 
functions, Experimental comparison, Biomedical data 
 

1 Introduction 
 
Cluster ensembles have been found to be more accurate 
than single clustering algorithms [8–12,14]. More 
importantly, they exempt the user from deciding on a 
particular clustering algorithm, thereby from running the 
risk of a poor choice. While in classification, the 
adequacy of the chosen algorithm is clear from the 
estimated accuracy of the classifier, in clustering, a bad 
choice of algorithm may compromise the whole study. 
Thus the common consensus seems to be that a random 
choice of an ensemble is not as hazardous as a random 
choice of a single clustering method [11,20]. The next 
question is how to reduce the uncertainty in the choice of 
an ensemble design strategy. 
 
The paper reports the results from an experimental 
comparison of ensemble design methods on 24 data sets. 
The rest of the paper is organised as follows. Section 2 
details the ensemble design methods. Section 3 describes 
the data sets focusing on those which have not been used 
as benchmarks hitherto. Section 4 gives the experimental 
protocol and the results. Section 5 concludes the paper. 

2 Cluster ensembles 
 
There are two main issues in designing cluster ensembles: 
(1) the design of the individual “clusterers” so that they 
form potentially an accurate ensemble, and (2) the way the 
outputs of the clusterers are combined to obtain the final 
partition, called the consensus function. In some ensemble 
design methods the two issues are merged into a single 
design procedure, e.g., when one clusterer is added at a 
time and the overall partition is updated accordingly 
(called the direct or greedy approach). In this study we 
consider the two tasks separately so that we can study 
possible matches between individual clusterer design and 
consensus functions. 
 

2.1 The individual clusterers 
 
Both diversity within the ensemble and accuracy of the 
individual clusterers are important factors [5,12,13], 
although not straightforwardly related to the ensemble 
accuracy. Many heuristics have been proposed in order to 
achieve diverse clusterers using the same clustering 
method [4,7,12,22]. Using a random number of target 
clusters for each ensemble member has been found to be 
one of the most successful heuristics, therefore we use it 
in all ensemble designs here. The number of target 
clusters was randomly chosen between 2 and 22. The 
choice of this interval was guided by our pilot 
experiments with a small number of data sets. All the 
ensembles studied here were homogeneous, i.e., all 
clusterers were created using the same clustering method, 
in one of the following ways: 
 
(a)  k-means with random initialisations 
(b) k-means with random initialisations and using 
   random sub-samples of the data 
(c) single linkage using different random sub-samples 
(d) mean linkage using different random sub-samples. 
 

2.2 The consensus function 
 
The consensus function aggregates the outputs of the 
individual clusterers into a single partition. Many 
consensus functions use the consensus matrix obtained 



from the adjacency matrices of the individual clusterers. 
Let N be the number of objects in the data set. The 
adjacency matrix for clusterer k is an N by N matrix with 
entry (i,j) = 1 if objects i and j are placed in the same 
cluster by clusterer k, and (i,j) = 0, otherwise. The overall 
consensus matrix, M, is the average of the adjacency 
matrices of the clusterers [8,17,20]. Its (i,j) entry gives the 
proportion of clusterers which put i and j in the same 
cluster.  
 
Here we examined the following consensus functions 
 
(i)  single linkage on M (similarity). The overall 
consensus matrix, M, is interpreted as similarity between 
the objects. Then 1 – M can be thought of as distance and 
used as input of a single linkage clustering. The result is 
taken to be the ensemble partition. 

(ii)  single linkage on M (data). Here the overall 
consensus matrix, M, is interpreted as “data”. Each object 
is represented by N features, i.e., the j-the feature for 
object i is the (i,j) entry of M. Using similarities as 
features has been demonstrated to work well [18], and is 
also related to the idea which underpins the SVM 
classifier.  

(iii)  mean linkage on M (data).  

(iv)  k-means on M (data).  

(v)  CSPA on M (similarity graph). The Cluster-based 
Similarity Partition Algorithm [20] treats M as a graph 
with the N objects as the vertices and the similarities being 
the weights. CSPA uses a graph partitioning algorithm, 
METIS. It reduces the size of the graph by collapsing 
vertices and edges, partitions the smaller graph, and then 
un-coarsens it to construct a partition for the original 
graph, which represents the ensemble output. 

(vi)  HGPA on the set of individual adjacency matrices. 
The HyperGraph-Partitioning Algorithm [20] works by 
constructing a hypergraph from all individual adjacency 
matrices. Thus two vertices i and j are connected by as 
many edges as there are 1’s as the (i,j) entry of the 
adjacency matrices. The hyperfraph is then partitioned 
using an algorithm called HMETIS. 
 
Consensus function (i) is standard, straightforward and a 
common choice for cluster ensembles. Functions (v) and 
(vi) are less straightforward but have been demonstrated 
to be robust and accurate. (Provision of the Matlab code 
by Strehl and Ghosh has been great help in this respect.) 
On the other hand, consensus functions (iii), (iv) and (v) 
are unusual as M is treated, rather counter-intuitively, as 
data. Our reasons to include these functions here was their 
good performance in the pilot experiments. 
 
As in many similar studies, we shall assume that the 
number of true clusters is given and is available to the 
consensus function. Specifically, consensus functions (iv), 
(v) and (vi) require this number as an input parameter. On 
the other hand, functions (i), (ii) and (iii) can provide an 
estimate of the number of clusters by examining the 
criterion function and finding the cluster structure before 
the “largest jump”. 

 

2.3 The cluster ensembles 
 
Table 1 shows the ensembles examined here. 
 

Table 1. Ensemble designs examined here 
 

Ens Individual clusterers Consensus function 

1 (a) k-means (iii) mean linkage + data 

2 (c) single linkage (iii) mean linkage + data 

3 (d) mean linkage (iii) mean linkage + data 

4 (b) k-means + subsample (iii) mean linkage + data 

5 (a) k-means (iv) k-means + data 

6 (c) single linkage (iv) k-means + data 

7 (d) mean linkage (iv) k-means + data 

8 (b) k-means + subsample (iv) k-means + data 

9 (a) k-means (vi) HGPA 

10 (c) single linkage (vi) HGPA 

11 (d) mean linkage (vi) HGPA 

12 (b) k-means + subsample (vi) HGPA 

13 (a) k-means (v) CSPA 

14 (c) single linkage (v) CSPA 

15 (d) mean linkage (v) CSPA 

16 (b) k-means + subsample (v) CSPA 

17 (a) k-means (ii) single linkage + data 

18 (c) single linkage (ii) single linkage + data 

19 (d) mean linkage (ii) single linkage + data 

20 (b) k-means + subsample (ii) single linkage + data 

21 (a) k-means (i) single linkage + similarity 

22 (c) single linkage (i) single linkage + similarity 

23 (d) mean linkage (i) single linkage + similarity 

24 (b) k-means + subsample (i) single linkage + similarity 
 

3 Data sets 
 
The data sets in this study were chosen to represent a 
variety within a specific class of data sets characterised 
by: (1) small number of true classes, which may or may 
not correspond to coherent clusters; (2) moderate number 
of observations (up to few hundred); (3) moderate number 
of features (typically 5 to 30). Such data sets are collected, 
for example, in clinical medicine for pilot research 
studies. Thus we picked mostly biomedical data as the real 
data sets.  
 

3.1 Artificial data 
 
Figure 1 displays the 6 artificial data sets with the “ground 
truth” clusters to be discovered by the clustering 
algorithms. Data sets (4)-(6) were used in 2 dimensions as 
shown. Ten dimensions of uniform random noise with 
uniform distribution were added to each of data sets (1)-
(3), so they were used in the experiments as 12-
dimensional.  



  
(1) four gauss 

 
(2) easy doughnut 

 

  

(3) difficult doughnut (4) half rings 
 

  
(5) bananas (6) spirals 

 
Figure 1. The six artificial data sets 

 
Since all dimensions of all data sets were normalised to a 
mean of zero and standard deviation 1, the noise for sets 
(1)-(3) became the predominant component and the 
clustering results were relatively poor. Set (5) almost 
represents the “impossible problem” as there are no 
distinguishable clusters there. However, the points are 
generated from two aligned banana-shaped curves with 
Gaussian noise around the points on the curves. Thus the 
density distribution within the clouds is supposed to be the 
guide to the desired clustering result. Sets (4) and (6) have 
been used in comparative studies similar to ours. 
 

3.2 Real data 
 
A summary of the real data is given in Table 2. The 
notations in the tables are: N: number of data points, n: 
number of features, c: number of classes. We assume that 
classes correspond to clusters. Unsubstantiated as this 
assumption is, we chose to make it, as many authors have 
done elsewhere. The problem is that there is no reasonable 
way to establish the “true” number clusters, and the 
alternative would be to leave out all the experiments with 
real data.  
 
Ten of the real data sets are taken from the UCI Machine 
Learning Repository1 [2]. The crabs data set is used in 
[19]. The remaining 7 data sets are new. They have been 
used in recent medical studies as described below2.  
 
•Contractions. This data set comes from wireless capsule 
endoscopy [23]. The problem is to detect intestinal 
contractions in video images sent by a small capsule 
travelling along the intestinal tract. Twenty seven features 

                                                
1 http://www.ics.uci.edu/~mlearn/MLRepository.html 
2http://www.informatics.bangor.ac.uk/~kuncheva/ 
      activities/real_data.htm 

were extracted using basic image descriptors. The 98 
objects (49 in each class) were manually selected to 
represent the most clear examples of the classes.  
 

Table 2. Details of the real data sets 
 

Dataset N n c Source 

breast 277 9 2 UCI 

contractions 98 27 2 CVC, Barcelona 
crabs 200 7 2 Ripley [] 
ecoli 336 7 8 UCI 
heart 270 13 2 UCI 
iris 150 4 3 UCI 
laryngeal_2 213 16 2 CLBME, Sofia 
laryngeal_3 353 16 3 CLBME, Sofia 
leukaemia 38 7129 2 UCI 
liver 345 6 2 UCI 
lymph 148 18 4 UCI 
pima 768 8 2 UCI 
respiratory 85 17 2 CLBME, Sofia 
soybean_large 266 35 15 UCI 
thyroid 215 5 3 UCI 
voice_3 238 10 3 CLBME, Sofia 
voice_9 428 10 9 CLBME, Sofia 
weaning 302 17 2 CLBME, Sofia 

 
• Laryngeal-2 and -3 and Voice-3 and -9. These data sets 
consist of feature vectors representing voice signals of 
patients suffering from laryngeal diseases [3]. Different 
parameters are used in Laryngeal and Voice, respectively. 
The number following the data set name denotes the 
number of classes. 
• Respiratory. The set consists of the clinical records (17 
features) for 85 newborn children with two types of 
respiratory distress syndrome (RDS):- Hyaline Membrane 
Disease (HMD) and non-HMD. The two classes need 
urgent and completely different treatments, therefore an 
early and accurate RDS classification is crucial within the 
first few hours after delivery. 
• Weaning. This set consists of data from a retrospective 
study of 151 patients suffering from acute respiratory 
insufficiency on a long-term (at least 7 days) mechanical 
ventilation [21]. Each case is described by 17 clinical and 
preclinical features. Two classes of patients have formed: 
not ready for weaning and ready for weaning from 
mechanical ventilation. Each patient is an instance in both 
classes as their parameters were measured once before 
weaning and once at the start of weaning. 
 

4 Experiment 
 

4.1 Protocol 
 
As all ensemble methods rely on a random element, we 
built 100 ensembles for each data set and each ensemble 
method. Each ensemble consisted of 10 clusterers. Two 
random parameters were involved. The first was random 
choice of target number of clusters for each ensemble 



member. The second random parameter is either random 
initialization (k-means) or random subsample (single- and 
mean- linkage methods), as explained in 2.1. The 
accuracy of an ensemble was measured as the agreement 
between the ensemble partition and the “true” partition. 
We used two measures: the adjusted Rand index (AR) 
[16] and the classification accuracy (CA). AR evaluates 
the dependence between two partitions. If they are formed 
completely independently of one another AR takes values 
close to 0 (small negative values are also possible). The 
maximum value of AR is 1, and is achieved for identical 
partitions. The classification accuracy, CA, is commonly 
used for evaluating clustering results. To guarantee the 
best re-labelling of the clusters, CA is computed in the 
following way. Consider the true class label of each 
object. Re-label each cluster produced by the ensemble 
with the class label most represented among the members 
of this cluster. Store the number of objects from the 
majority class, as they will receive correct labels. The 
proportion of correctly labelled objects in the data set is 
CA for this partition.   
 

4.2 Results 
 
Our first test was Friedman’s Two-way ANOVA in order 
to determine whether the ensemble methods were 
significantly different. Denote by AR(i,j) the averaged AR 
across the 100 runs for ensemble number j and data set 
number i. Thus the results were organised in a 24 by 24 
matrix, AR(i,j), where the data sets corresponded to the 
rows (blocks) and the ensemble methods corresponded to 
the columns (treatments). The ranks of the methods were 
calculated separately for each data set. The entries in the 
row for the data set were sorted in descending order, the 
first was assigned rank 1, the second – rank 2, etc. If the 
ensemble methods were equivalent, then their ranks would 
be close to random for the different data sets. To test this 
hypothesis, we calculate the test statistic 
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where n is the number of rows, k is the number of columns 
(both 24 in our case), and Rij is the rank in cell (i,j). If the 
ranks were random, their sums would be approximately 

equal. If k and n are not too small, 2
rχ  has a chi-square 

distribution. If the computed statistic is greater than the 
tabulated value with k – 1 degrees of freedom, then we 
reject the hypothesis that the ensemble methods are 
equivalent.  
 
We obtained 2

rχ = 92.8, hence significant difference at 23 
degrees of freedom with p < 0.0001.  
 
Let CA(i,j) be the classification accuracy averaged across 
the 100 runs for ensemble number j and data set number i. 
Friedman’s Two-way ANOVA was applied to both AR 
and CA. For CA we obtained 2

rχ = 107.7 which also 
allows us to reject the hypothesis that the ensemble 
methods are equivalent at p < 0.0001. 

The confirmed differences require a further analysis to 
determine which ensemble method or methods are the 
best. 
 
Let sAR(i,j) and sCA(i,j) be the respective standard 
deviations for AR and CA. The 95% confidence interval 
for the mean AR can then be calculated as  
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Thus we can evaluate the statistical significance of the 
difference between any two ensemble methods on any 
data set. To compare a pair of ensemble methods, x and y, 
we count the number of data sets (out of 24) for which x 
has been significantly better than y. Denote this number 
by b(x,y). Significant difference for a given data set, k, is 
observed if the respective confidence intervals have no 
intersection, i.e., 
 

),(196.0),(                                   

    ),(196.0),(

yksykAR

xksxkAR

AR

AR

×+
>×−

 

 
Respectively, we get the number of data sets where x has 
been significantly worse than y, denoted w(x,y), and then 
s(x,y) = 24 – b(x,y) – w(x,y) is the number of data sets 
where the difference is not statistically significant. 
Comparisons for all pairs of ensemble methods were done 
for both criteria, AR and CA. Finally, an index of total 
performance was produced for each method as 
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Tables 3 and 4 display the results for AR and CA, 
respectively. The ensemble methods are sorted by t(i). 
The best method is the one at the top of the table. The sum 
of ranks for the methods across the 24 data sets are also 
provided (used in (1)).The total indices for the methods 
are visualised as bar graphs in Figure 2. 
 

4 8 5 

AR 

1 4 8 5 

CA 
 

Figure 2.Bargraph of sorted t(i) for the 24 ensemble methods 



Table 3. Results using adjuster Rand index (AR) (times better, 
times worse, total index t and rank) 
 

Ens b w t Rank 

4 303 102 201 206.5 
8 302 102 200 192.5 
5 302 105 197 191.5 
1 264 124 140 223.0 
7 262 156 106 245.0 

15 278 179 99 256.5 
3 266 198 68 270.0 

17 229 176 53 281.5 
21 212 176 36 282.5 
2 240 209 31 283.0 

16 227 210 17 294.0 
20 197 189 8 284.0 
12 217 212 5 311.5 
13 224 219 5 296.0 
24 189 186 3 299.0 
14 225 226 -1 298.5 
9 218 224 -6 297.5 
6 204 239 -35 320.5 

19 186 261 -75 332.5 
11 164 281 -117 343.5 
18 148 316 -168 390.5 
10 118 346 -228 413.0 
23 114 357 -243 428.0 
22 92 388 -296 459.5 

 
 

Table 4. Results using classification accuracy (CA) (times 
better, times worse, total index t and rank) 

 
Ens b w t Rank 

4 332 88 244 163.0 
8 326 85 241 177.0 
5 328 96 232 184.0 

1 329 99 230 182.5 
3 262 176 86 259.5 

17 228 174 54 257.5 
21 228 182 46 280.5 
15 233 193 40 274.5 
16 218 195 23 291.5 
20 212 195 17 288.0 

7 198 184 14 296.0 
13 213 204 9 296.5 
12 210 212 -2 308.5 
24 185 193 -8 294.5 

9 208 222 -14 303.5 
2 215 231 -16 298.0 

19 190 247 -57 333.5 
14 184 263 -79 342.5 
11 158 263 -105 350.0 

6 153 279 -126 361.5 
18 151 303 -152 386.0 
23 123 328 -205 414.0 
10 110 319 -209 413.0 
22 104 367 -263 444.5 

To evaluate which ensembles form a group of 
undistinguishable accuracy, we applied Friedman’s Two-
Way ANOVA to a sequence of nested sets of ensemble 
methods. Using the ordering in Table 3, the first set 
contained ensembles 4 and 8. We calculated the 2

rχ  
statistic and plotted it in Figure 3 against the degrees of 
freedom (set size minus one, so x = 1 because k = 2 
(n=24) in eq. (1)). To evaluate the statistical significance 
of the difference, we plotted also the tabular values of chi-
square at degrees of freedom k – 1 for p = 0.05 and p = 
0.0001. The next set of methods, {4,8,5}, produced the 
point plotted at degrees of freedom 2 (k = 3, n = 24), and 
so on. The number next to each dot in the plot is the 
ensemble number entering the set. The Figure shows that 
statistically significant difference between methods, at 
significance p = 0.0001 appears only after including 
ensemble 10 in the group. Thus the difference between the 
ensembles shown in rows 1 to 21 in Table 3 is not 
significant at p = 0.0001. Significant difference will be 
observed at p = 0.05 when ensemble 2 enters the set. The 
analogous result for CA, using Table 4 is plotted in Figure 
4. 
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Figure 3. 2

rχ  (AR criterion) and tabulated chi-square 
values plotted against the degrees of freedom for nested 
sets of ensemble methods: {4,8}, {4,8,5}, {4,8,5,1}, etc. 
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Figure 4. 2

rχ  (CA criterion) and tabulated chi-square 
values plotted against the degrees of freedom for nested 
sets of ensemble methods: {4,8}, {4,8,5}, {4,8,5,1}, etc 
 



Table 5. Ensemble designs sorted by the total index of 
performance, t(i), using AR 

Ens Individual clusterers Consensus function 
4 (b) k-means + subsample (iii) mean linkage + data 

8 (b) k-means + subsample (iv) k-means + data 

5 (a) k-means (iv) k-means + data 

1 (a) k-means (iii) mean linkage + data 

7 (d) mean linkage (iv) k-means + data 

15 (d) mean linkage (v) CSPA 

3 (d) mean linkage (iii) mean linkage + data 

17 (a) k-means (ii) single linkage + data 

21 (a) k-means (i) single linkage + similarity 

2 (c) single linkage (iii) mean linkage + data 

16 (b) k-means + subsample (v) CSPA 

20 (b) k-means + subsample (ii) single linkage + data 

12 (b) k-means + subsample (vi) HGPA 

13 (a) k-means (v) CSPA 

24 (b) k-means + subsample (i) single linkage + similarity 

14 (c) single linkage (v) CSPA 

9 (a) k-means (vi) HGPA 

6 (c) single linkage (iv) k-means + data 

19 (d) mean linkage (ii) single linkage + data 

11 (d) mean linkage (vi) HGPA 

18 (c) single linkage (ii) single linkage + data 

10 (c) single linkage (vi) HGPA 

23 (d) mean linkage (i) single linkage + similarity 

22 (c) single linkage (i) single linkage + similarity 
 

Table 6. Ensemble designs sorted by the total index of 
performance, t(i), using CA 

Ens Individual clusterers Consensus function 
4 (b) k-means + subsample (iii) mean linkage + data 

8 (b) k-means + subsample (iv) k-means + data 

5 (a) k-means (iv) k-means + data 

1 (a) k-means (iii) mean linkage + data 

3 (d) mean linkage (iii) mean linkage + data 

17 (a) k-means (ii) single linkage + data 

21 (a) k-means (i) single linkage + similarity 

15 (d) mean linkage (v) CSPA 

16 (b) k-means + subsample (v) CSPA 

20 (b) k-means + subsample (ii) single linkage + data 

7 (d) mean linkage (iv) k-means + data 

13 (a) k-means (v) CSPA 

12 (b) k-means + subsample (vi) HGPA 

24 (b) k-means + subsample (i) single linkage + similarity 

9 (a) k-means (vi) HGPA 

2 (c) single linkage (iii) mean linkage + data 

19 (d) mean linkage (ii) single linkage + data 

14 (c) single linkage (v) CSPA 

11 (d) mean linkage (vi) HGPA 

6 (c) single linkage (iv) k-means + data 

18 (c) single linkage (ii) single linkage + data 

23 (d) mean linkage (i) single linkage + similarity 

10 (c) single linkage (vi) HGPA 

22 (c) single linkage (i) single linkage + similarity 
 
It appears that CA is more sensitive than AR in terms of 
finding differences between ensemble methods. It is 

interesting to observe that the ordering of the methods is 
similar but not identical for the two criteria. 
 
To help evaluating the design options for the ensemble 
methods, Tables 5 and 6 reproduce the descriptions in 
Table 1 sorted by the total index of ensemble 
performance, t(i), for AR and CA, respectively. The 
methods which fetch a significant difference at p = 0.0001 
are separated with a double line. The highlighted cells 
contain the methods which are not distinguishable as the 
best group, at p = 0.05. 
 
Tables 5 and 6 reveal some interesting results 
 
(1) The standard single linkage method appears to be the 
worst choice for the individual clusterers. Apart from 
method 2, which apparently benefits from a successful 
consensus function, all ensembles based on single linkage 
fall in the bottom part of the tables. 
 
(2) The best ensemble methods use k-means for the 
individual clusterers. The diversifying heuristic used for 
all ensembles here – random assignment of number of 
clusters for each clusterer – is probably sufficient together 
with random initialization. Drawing a sub-sample for k-
means is slightly favourable with some consensus 
functions but the difference is not significant. 
 
(3) Devising a good consensus function is a topic of 
continuing interest [1,6,15,20,22]. Many studies advocate 
CSPA and HGPA as a better alternative to single linkage 
on the consensus matrix M. All these studies assume that 
M taken to represent similarity. They are generally right, 
as CSPA and HGPA are better than single linkage + 
similarity apart from ensembles designed by k-means 
(ensemble 21 is better than ensembles 13 and 9 on both 
criteria). However, it appears that the clear winner in the 
consensus function “competition” is using the consensus 
matrix as data. Within the shaded blocks of rows there is 
one CSPA (ensemble 15) and one single linkage + 
similarity (ensemble 21) as the consensus functions. All 
the others use M as data. This confirms our previous 
results as well [13]. Based on these findings we 
recommend using M as data in ensemble designs 4, 8, 5 
and 1. 
 

5 Conclusions 
 
In this paper we compare experimentally 24 ensemble 
design methods shown in Table 1. A collection of 24 data 
sets were used in order to evaluate the relative 
performance of the methods. The performance criteria 
were the Adjusted Rand index (AR) and the classification 
accuracy (CA).  
 
We have limited the ensemble size to 10. The ensembles 
considered here are very small, compared to the 
ensembles studied elsewhere, e.g Greene et al. [12], who 
use sizes up to 3000. One positive side of this choice is 
the obvious gain in computational speed, which allowed 
us to run 100 experiments for each of the 24 data sets and 



each of the 24 ensemble methods. We expect that for large 
ensemble sizes the differences between the methods may 
be blurred because all ensembles will be expected to give 
reasonable performance for sizes beyond 1000. The 
negative side of the small ensemble size is that the results 
here are valid for small, and admittedly not very accurate 
ensembles. We cannot project the findings for the case of 
large ensembles which limits the impact of the results. 
 
Because of the large number of experiments, we were able 
to carry out statistical comparisons using both confidence 
intervals for pairwise comparisons and Friedman’s Two-
Way ANOVA for group comparisons.  
 
The consensus functions tested here included a new 
approach whereby the consensus matrix M is used as data 
(features) rather than as similarity. This appeared to be 
even more successful than we expected ourselves, 
although it does confirm our previous experiments of a 
much smaller scale. Interpreting M as data fared better 
than some standard and widely used consensus functions 
including CSPA and HGPA. 
 
The fact that the number of clusters was “given” to the 
consensus function seems to be a serious limitation of this 
study. However, this has been a common practice, 
especially when consensus functions are being compared, 
because many consensus functions rely on this number 
being provided. Alternatively, the number of clusters can 
be estimated by using cluster validity indices at individual 
level and deriving a final “consensus” number. The single 
linkage combination method provides a means for 
estimating this number. Other options lie with using 
stability measures. In all these cases, the accuracy of this 
guess will make or break the ensemble. As our focus was 
on comparing consensus functions, we decided to place 
them all in the best starting position whereby the number 
of clusters is known in advance. Future research directions 
include expanding the experiment to examine various 
diversity measures in relationship to AR and CA, as well 
as checking the consistency of the results obtained here 
for other ensemble sizes. 
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