
Nearest Neighbour Classifiers for Streaming Data with Delayed Labelling

Ludmila I. Kuncheva
School of Electronics and Computer Science

University of Wales
Bangor, Gwynedd, LL57 1UT, UK

l.i.kuncheva@bangor.ac.uk

J. Salvador Sánchez
Dept. Llenguatges i Sistemes Informàtics

Universitat Jaume I
Av. Sos Baynat s/n, 12071 Castelló, Spain

sanchez@uji.es

Abstract

We study streaming data where the true labels come with
a delay. The question is whether the online nearest neigh-
bour classifier (IB2 and IB3 here) should employ the un-
labelled data. Three strategies are examined: do-nothing,
replace and forget. Experiments with 28 data sets show that
IB2 benefits from unlabelled data, while IB3 does not.

1. Introduction

Most traditional learning algorithms assume the avail-
ability of a training set of labelled objects. In many do-
mains, however, collecting labelled training objects may be
costly, time-consuming, dangerous or destructive, while it
is relatively easy to obtain unlabelled objects. This has pro-
voked significant interest in semi-supervised learning meth-
ods [13, 15, 17].

Amongst the success reports with semi-supervised learn-
ing, researchers voice their concerns that the classifiers
might deteriorate rather than improve with unlabelled data
[2–4, 17]. The main result by Cozman et al. [3, 4] demon-
strates theoretically that if the model is guessed correctly,
unlabelled data is expected to improve on the error. How-
ever, if there is a modelling error (incorrect guess about the
shape of the data distribution), using unlabelled data may
do more harm than good.

The problem is exacerbated further when the data is not
available as a batch but comes one object at a time (called
streaming data), especially where a concept drift might be
present. The scenario we consider in this study was inspired
by an example due to Kelly et al. [7]. Suppose that a bank
manager is using a decision support system to help them de-
cide whether to approve a loan to client X. The input to the
system includes X’s current salary. The problem descrip-
tion changes with time because of gradual changes in many
demographic factors, or simply because of inflation. A per-
son with X’s salary may no longer be eligible for a loan in

a few years time. The classifier will become obsolete if it
is not being updated with the incoming data. The problem,
however, is that the true label of the data point does not al-
ways become available straight after the classifier makes the
prediction, so the new object cannot be used as feedback. In
the above example, if the loan was approved, the true label
(either good loan or bad loan) will become available a cou-
ple of years later, when X is either making regular repay-
ments or failing to do so. The question here is whether we
should update the classifier using the unlabelled data until
the labels become available, or, in the light of the criticism
above, wait until we get the labels. There is different type
of risk associated with the two strategies.

Here we study this problem which we call delayed la-
belling. Although any online classifier can be considered,
we chose, as a starting point, to study the online nearest
neighbour classifier (NNC). The main reason was that, be-
ing a non-parametric classifier, nearest neighbour does not
make any modelling assumption about the probability den-
sities, and so cannot make wrong guesses to harm the semi-
supervised learning. Also, before embarking on the full sce-
nario with semi-supervised learning and concept drift, here
we look at delayed labelling for static problems.

2. Online nearest neighbour classifiers

A good online classifier for both static and dynamic en-
vironments should have the following qualities [5, 11]: (i)
Single pass through the data (the classifier must be able to
learn from each data point without revisiting it); (ii) Lim-
ited memory and processing time (each data point should
be processed in a constant time regardless of the number of
points processed in the past); and (iii) Any-time-learning (if
stopped at time t, the current classifier should be equivalent
to a classifier trained on the batch data up to time t).

Online NNCs can draw upon a rich body of data edit-
ing methods [16]. The current ‘classics’ are still the three
intuitive nearest neighbour online versions (Instance-Based
learning) IB1, IB2 and IB3 by Aha et al. [1]. The main de-

2008 Eighth IEEE International Conference on Data Mining

1550-4786/08 $25.00 © 2008 IEEE

DOI 10.1109/ICDM.2008.33

869

2008 Eighth IEEE International Conference on Data Mining

1550-4786/08 $25.00 © 2008 IEEE

DOI 10.1109/ICDM.2008.33

869

cision in designing an online NNC is how to maintain the
reference set. The three trivial possibilities with respect to
the memory size are [8]: (1) Full memory, in which the
learner retains all training objects; (2) Partial memory, in
which it retains only some of the training objects; and (3)
No memory, in which it retains none.

Online NNC should be in the partial memory group. Ide-
ally, we need to keep a (small) reference set which, when
deemed necessary, is expanded or shrunk within given lim-
its. This means that there must be some mechanism to for-
get (remove) objects. How to forget is a difficult problem
that can be tackled through several strategies.
• Passive forgetting [10] (also called time-weighted forget-
ting [14] and implicit forgetting [14]) is based only on the
time elapsed since the object was added to the reference set.
It assumes that the importance of data decreases over time.
Passive forgetting acts as a moving window where the ref-
erence set is the last data batch. Its size is a parameter of
the algorithm.
• Active forgetting [10] (also referred as to explicit forget-
ting [14]) implies that more information from data is used
to decide which objects should be dropped.
(i) Density-based forgetting follows the intuition of the
“life” game. If a region is too crowded, we sieve out some
objects (locally-weighted forgetting [14]). On the other
hand, if a region is too distant, and not providing nearest
neighbours, it is removed altogether [14]. In the jargon of
data editing, the former strategy corresponds to condensing,
while the latter corresponds to editing.
(ii) Error-based forgetting is perceived as the most success-
ful of the forgetting heuristics [1, 10, 14]. In this case
each object in the reference set has a classification record.
The more streaming data it labels correctly as their near-
est neighbour, the stronger its record becomes. The objects
with weak records are cleared at regular intervals.

2.1. IB2 and IB3

In this paper, we are interested in partial memory NNCs.
Our pilot experiments favoured error-based forgetting com-
pared to passive forgetting and density-based active forget-
ting. Although IB2 (with no forgetting) and IB3 [1] lead
to relatively large reference sets, we chose them because of
their sensible results in terms of classification error.

IB2 starts with an empty training set S. Upon receiv-
ing a new object, it classifies it using the objects currently
held in memory. If the classification is correct, the object is
discarded. Conversely, if the classification is incorrect, the
object is added into S. This constitutes a one-pass version
of the Hart’s condensing algorithm [6], and will grow the
reference set as long as there are misclassifications on the
streaming data.

Note that in the original IB2 algorithm, the first object is

added automatically to the empty reference set. In our case,
an initial labelled reference set is already in place, there-
fore the first object from the online data may or may not be
added to that, depending on the class labels it receives.

IB3 extends IB2 by adding a forgetting mechanism as
shown in Table 1. We found that the choices in the initiali-
sation of IB3 have a serious effect on the algorithm’s perfor-
mance, so we specify these, as well as our data organisation,
in greater detail than we have seen elsewhere.

IB3 starts with an initial reference set S, where all ob-
jects are designated as ‘accepted’. When a new object x is
received, IB3 searches for its nearest neighbour s∗ among
the accepted objects in S. If there are no accepted objects,
a random object s∗ is picked and nominated to serve as the
nearest neighbour. If the new object is not correctly clas-
sified by its nearest neighbour, it is added to S. Next the
algorithm revises the acceptance records of those objects in
S that are no further from x than s∗ is. If they label x cor-
rectly, their accuracy scores increase. The prior probabili-
ties are updated. A check is carried out to find out whether
the accuracies of the objects being updated are significantly
higher than the prior probabilities for their respective class
(90% confidence interval). If so, they are designated as
‘accepted’. If the accuracy score of such an object is sig-
nificantly lower than the respective prior (70% confidence
interval), the object is removed from S. All objects in-
between the two decisions stay as ‘non-accepted’ in S and
are re-evaluated if they happen to be selected for updating.

At the beginning of the algorithm, the accuracy records
have very high variance because they are based on few ob-
jects. Having a conservative acceptance policy, IB3 quickly
reduces the initial reference set to status ‘non-accepted’ and
practically starts from scratch building up a new reference
set. A warm-up stage, where all objects are accepted or at
least no object is removed, may help in stabilising the start-
ing phase.

3. Strategies to handle delayed labelling

At step t in the delayed labelling scenario, we have a
reference set St and a new unlabelled object xt+1. After
predicting the label for xt+1 we receive the label of the ob-
ject that came τ steps earlier, xt−τ+1. Objects from xt−τ+2

to xt+1 are still without labels. The question is whether we
want to use the unlabelled data to update S, and, if so, how?

The algorithms selected for this study are error-driven
because they update the reference set if there is an error in
the prediction. They were chosen exactly for this property
as the other forgetting strategies were found to be inferior
to that. If the true label of xt+1 is unknown, there is no ob-
vious way to check the accuracy of the prediction. We pro-
pose to use a heuristic, which we call conditional labelling.

The two nearest neighbours of xt+1 are found in S, say s(1)

870870

Table 1. The IB3 algorithm
1. Choose a random initial reference set S.
2. For every s ∈ S, set up its accuracy record as A(s) = 1, its acceptance record as B(s) = 1, and its count of number of updates
C(s) = 1.
3. Estimate the prior probabilities for the c classes using the current reference set, P (i) = Ni/N , where Ni is the number of
reference objects from class i, and N is the total number of objects, i = 1, . . . , c.
4. Let x be the new object, and let y be its true class label. Let β = {s|B(s) = 1} be the set of all accepted objects in S. If β = ∅
(no accepted objects), then select a random object s∗ from S, else take s∗ to be the element in β that is closest to x.
5. Assign the label of s∗ to be the predicted label, ypredicted, of x. If ypredicted = y, continue from step 7 with the next object.
Otherwise proceed with step 6.
6. Add x to S. Assign accuracy A(x) = 1, acceptance B(x) = 1 and count C(x) = 1.
7. Update the priors and the total counts. P (i) ← P (i)N/(N + 1) for i �= y, and P (i) ← (P (i)N + 1)/(N + 1) for i = y. Set
Ny ← Ny + 1 and N =

∑
Ni

8. Loop through all objects which are at the same distance to x as s∗ is, or closer. Let s be one such object, and let ys be its label.

• Update the accuracy records. If ys = y (s predicts the correct label for x), update A(s)← (A(s)C(s) + 1)/(C(s) + 1), else
(ys �= y) A(s)← A(s)C(s)/(C(s) + 1).

• Update the accuracy counts. C(s)← C(s) + 1

• Revise the acceptance status of s. Let p = Pys be the prior probability for the class which s belongs to, and a = A(s) be the
updated accuracy record. Calculate the 90% confidence intervals for a and p, [L90a, U90a] and [L90p, U90p] using

CI =

(
ξ + z2

2n
± z

√(
ξ(1−ξ)

n
+ z2

4n2

))

1 + z2

n

(1)

with z = 0.9, ξ = a and n = C(s) (or ξ = p and n = Nys). If L90a > U90p, then B(s) = 1 (accept s for the next reference
set) else B(s) = 0. Calculate in the same way the 70% confidence intervals, using z = 0.7. If U70a < L70p, remove s from
the data set altogether.

9. Continue from step 4. At any time t, the reference set of IB3 is the set of accepted objects only.

and s(2). If they have the same class label, we assume that
the prediction for xt+1 is correct, and if the two labels do
not match, we count a wrong prediction. As ypredicted is
needed as the label with which x will be stored in S, we
take ypredicted to be the label of the nearest neighbour s(1).

The strategies proposed to handle delayed labelling are:

• Do-nothing. This is the passive strategy where we let
the classifier run without any update on the unlabelled data.
The online nearest neighbour method will be behind by τ
time steps. To make a classification decision at step t, the
classifier would have seen the labels of objects up to t − τ .

• Replace. With this strategy we assume that conditional
labelling is carried out and some of the objects from the un-
labelled batch, xt−τ+1 . . .xt, would be included in St. If
xt−τ+1 is not one of the objects included in St, we proceed
with the next object. If xt−τ+1 is in St, we check its la-
bel. If ypredicted is the correct label for xt−τ+1, then we
do nothing and continue with the next object. If, however
the predicted and the true label of xt−τ+1 mismatch, we
replace ypredicted with the correct label.

• Forget. This is the same as Replace, up to the deci-
sion about what to do if the predicted and the true labels
of xt−τ+1 do not match. Here we remove xt−τ+1 from St.

The case of τ → ∞ means that the true labels are
never received. Thus the classifier keeps updating the ref-
erence set according to the conditional labelling heuristic,
and never stops to revise past labels. Hence the ‘replace’
and the ‘forget’ strategies do not get a chance to be applied,
and the two methods are equivalent to conditional labelling
all the way through.

4. Experiments

Twenty eight real data sets were employed in the present
experiment (see a summary in Table 2). Data were nor-
malised in the range [0, 1]. All features were numerical and
there were no missing values. In the table, the data sets are
sorted by the total number of objects.

Although there is no strict guideline about what a suffi-
cient data size is, the common wisdom [9] is that the size of
the training data should be around 10 × n × c, where n is
the number of features and c is the number of classes in a
problem. Our small initial reference set was of size 1×n×c.

The experimental set-up was as follows:
• 100 runs were carried out with 90% of the data used for
training and 10% used for testing. The splits were done

871871

Table 2. Data sets used in the experiment

Data set Features Classes Objects Source
iris 4 3 150 UCI1

wine 13 3 178 UCI
spiral 2 2 194 UCI
crabs 6 2 200 Ripley [12]
sonar 60 2 208 UCI

laryngeal1 16 2 213 Library2

glass 9 6 214 UCI
thyroid 5 3 215 UCI

votes 16 2 232 UCI
voice3 10 3 238 Library
breast 9 2 277 UCI

intubation 17 2 302 Library
heart 13 2 303 UCI
ecoli 7 8 336 UCI
liver 6 2 345 UCI

spect 44 2 349 Library
ionosphere 34 2 351 UCI
laryngeal3 16 3 353 Library

voice9 10 9 428 Library
wbc 30 2 569 UCI

palynomorphs 31 3 609 Private3

australian 42 2 690 UCI
laryngeal2 16 2 692 Library

pima 8 2 768 UCI
vehicle 18 4 846 UCI
vowel 11 10 990 UCI

german 24 2 1000 UCI
image 19 7 2310 UCI

1UCI http://archive.ics.uci.edu/ml/
2Library http://www.informatics.bangor.ac.uk/∼kuncheva/

activities/real data full set.htm
3Images of pieces of kerogen extracted from microscope images of palynomorphs

using stratified sampling.
• From each training part of the data, a random stratified
sample of Nl = 1 × n × c was taken as the initial labelled
references set.
• The remaining part of the training data was used as the
new coming online data. To simulate an i.i.d. sequence, the
data was shuffled before each of the 100 runs.
• One point from the online data was fed to the system at a
time. The point was processed according to the respective
strategy to handle delayed labelling. The classification error
was evaluated on the testing set. In this way we created a
“progression curve” which is the error as a function of the
number of online objects seen by the classifier.
• The results were averaged across the 100 runs giving a
single progression curve for the data set.

The methods we compare through this experiment are:
• 1-NN whole. The NNC on the whole 90% training data

taken as the reference set.
• Initial. To evaluate whether the nearest neighbour im-
proves at all with streaming data (labelled or with delayed
labels), we report the testing error using only the initial ref-
erence set.
• IB2 do-nothing, IB2 replace, IB2 forget. The values of
the delay τ were 0, 5, 10, 15, 20, 25, 30, 35, 40, and ∞. For
τ = 0, ‘IB2 do-nothing’ is the standard IB2. For τ → ∞,
all three strategies reduce to IB2 with conditional labelling.
• IB3 do-nothing, IB3 replace, IB3 forget. τ = 0, 5, 10,
15, 20, 25, 30, 35, 40, and ∞.

For each of the 100 runs of the experiment, all methods
received the same partitions of the data into initial, online
and testing sets. The online data was presented to all meth-
ods in the same order.

4.1. The results: classification error

The methods were ranked for each data set and for each τ
using the classification errors. For IB2 and IB3 which give
progression curves, we took the error at the end, when all
streaming objects have been seen. As there are 8 competing
methods, the ranks for each data set and each τ were from
1 (best) to 8 (worst).

0 10 20 30 40
1

2

3

4

5

6

7

8

IB2 Do nothing
IB2 Replace
IB2 Forget
IB3 Do nothing
IB3 Replace
IB3 Forget
Initial
Whole data

Average ranks

τ
∞

Figure 1. Ranks for the IB2 and IB3 variants.

Figure 1 plots the averaged ranks versus τ (the average
was taken across the data sets). The figure reveals that the
three strategies for handling delayed labelling behave very
differently with the two methods. While IB2 benefits sub-
stantially from the ‘replace’ strategy, for IB3 this strategy
is a catastrophe. What is more interesting though is that
the ‘replace’ strategy with IB2 confidently outperforms the
‘do-nothing’ strategy. We used the same unlabelled data
submitted in the same order for both IB2 and IB3, with the
same philosophy adopted by the conditional labelling. It
is curious that the success of a simple heuristic depends so
heavily on the details of the online NNC.

The ‘do-noting’ strategy is ranked higher than the ‘for-
get’ strategy with both IB2 and IB3. For larger τ the ‘forget’
strategy is even worse than Initial. It is not surprising that

872872

Table 3. Comparison of strategies
(2) (3) (4) (5) (6)

(1) 1-NN whole 230/50/0 256/24/0 191/66/23 249/31/0 242/28/10
(2) Initial 65/89/126 33/38/209 78/145/57 33/127/120
(3) IB2 do-nothing 76/91/113 145/96/39 90/123/67
(4) IB2 replace 224/56/0 128/89/63
(5) IB2 forget 38/86/156
(6) IB3 do-nothing

‘1-NN whole’ was the clear winner of this contest, as it uses
the whole training set as a reference.

As a further confirmation of the findings using the ranks,
we ran paired t-test between each pair of methods, for each
data set, and for each τ . We dropped from the analyses ‘IB3
replace’ and ‘IB3 forget’ because they would only conta-
minate the comparison. The three values in the cells of
Table 3 show how many times the method of the row has
been significantly-better/same/significantly-worse than the
method of the column, with a confidence interval of 95%.
Note that for each pair of methods there are a total of 280
tests, since we have 28 databases and 10 values of τ .

Table 4. Index of performance
Wins Losses Index

(1) 1-NN whole 1168 33 1135
(4) IB2 replace 697 363 334
(3) IB2 do-nothing 437 540 −103
(6) IB3 do-nothing 416 531 −115
(2) Initial 209 742 −533
(5) IB2 forget 134 852 −718

Table 4 reports a ranking of the methods in terms of an
index of performance. For each method A, the index of
performance is calculated as the difference between wins
and losses, where wins is the total number of times that A
has been significantly better than another method and losses
is the total number of times that A has been significantly
worse than another method. From the results in Table 4, it
seems that the ‘IB2 replace’ strategy is significantly better
than the other methods.

4.2. The results: size of the reference set

The main question is whether the error reduction with
the ‘replace’ strategy is compensated for by larger reference
sets. To answer this question we compare ‘IB2 replace’ with
the next best method from Table 4, ‘IB2 do-nothing’. For
data set i we calculated: the Error Difference

Δerror = Ei,IB2 do-nothing(τ) − Ei,IB2 replace(τ),

where Ei,X(τ) is the error of method X on data set i for
delay τ , and the Size Difference

Δsize = Si,IB2 do-nothing(τ) − Si,IB2 replace(τ),

where Si,X(τ) is the size of the final reference set of method
X on data set i for delay τ .

If Δerror < 0 and Δsize < 0, ‘IB2 do-nothing’ is better
than ‘IB2 replace’ on both criteria, and when Δerror > 0
and Δsize > 0, ‘IB2 do-nothing’ is worse than ‘IB2 replace’
on both criteria. Out of the 28 data sets, for τ = 10, ‘IB2
do-nothing’ was better on 8 and ‘IB2 replace’ was better on
10 data sets. Figure 2 shows a scatterplot of the 28 data
sets on Δerror versus Δsize. The regions where one of the
method is clearly better than the other are shaded. Note that
most of the remaining data sets fall in the quadrant where
‘IB2 replace’ is better on the error and worse on the size.
However, for τ = 30 the success is reversed. ‘IB2 replace’
is clearly better (on both criteria) on 8 data sets and ‘IB2
do-nothing’ is clearly better on 12 data sets.

Δerror

−150 −100 −50 0 50 100
−15

−10

−5

0

5

10

Size difference

E
rr

or
 d

iff
er

en
ce

IB2 do−noting

IB2 replace

Δsize

Figure 2. Scatterplot of the 28 data sets for
‘IB2 replace’ and ‘IB2 do-nothing’ for τ = 10.

IB3 usually produces smaller reference sets than IB2.
Hence we decided to compare ‘IB2 replace’ with the third
best method,‘IB3 do-nothing’. The results are shown in Ta-
ble 5 for all values of τ from 5 to 40. They indicate that
‘IB2 replace’ does indeed pay the price for its low error by
selecting larger reference sets compared to the ‘do-nothing’
strategy, especially with IB3.

It would have been nice if ‘IB2 replace’ was the undis-
puted champion and we had a ready made recommendation
for handling delayed labelling. Unfortunately, this is not
the case. The purpose of this study was to explore some
possible avenues, and gather insight into the problem.

873873

Table 5. Number of data sets where the first
method is better than the second on both er-
ror and size.

τ 5 10 15 20 25 30 35 40
(3) > (4) 8 8 8 10 11 12 12 12
(4) > (3) 11 10 10 9 8 8 7 7
(6) > (4) 9 9 9 11 12 13 13 13
(4) > (6) 0 0 0 0 0 0 0 0

5. Conclusions

We explored three strategies for handling delayed la-
belling using two online NNCs, IB2 and IB3. The results
identified IB2 with the ‘replace’ strategy and IB3 with ’do-
nothing’ strategy as the best compromises between classifi-
cation error and the size of the reference set. Thus the main
question stated in the Introduction is still open for debate:
Is it better to use the unlabelled data (IB2 with replace) or
ignore it altogether (IB3 with do-noting)? We did not find
clear evidence either way, which resonates well with the
mixed opinions about semi-supervised learning.

Where do we go from here? This study only opened the
question about delayed labelling. It is interesting to investi-
gate the case where the environment does change with time,
and the reference sets will have to follow the changes. IB3
has a natural mechanism to do so by forgetting, while IB2
does not. The preferences with respect to the three strategies
is likely to change in favour of the forgetting. It will con-
tribute to reducing the size as well as keeping the reference
set up to date. The “lazy” do-nothing strategy is expected to
be inferior to the more proactive conditional labelling or an-
other version thereof. Thus one direction for future studies
would be investigating the same set-up with concept drift.

Both IB2 and IB3 may grow the reference sets without
limit. In our experiments we observed constant steady grow
with both methods, more markedly so with IB2, seeming
never to reach a saturation stage. Large reference sets are
not necessarily the best, and are unsuitable for online classi-
fiers. Having a progressively growing reference set violates
point (ii) from the desiderata list in Section 2. It is interest-
ing to attempt to restrict the size of the reference set. One
possible way to do so is to take advantage of the variety of
the available data editing methods.

Acknowledgment

Work partially supported by the Spanish Ministry
of Education and Science, grants DPI2006–15542 and
CSD2007–00018, and by EPSRC, grant #EP/D04040X/1.

References

[1] D. Aha, D. Kibler, M.K. Albert. Instance-based learn-
ing algorithms. Machine Learning, 6(1):37–66, 1991.

[2] O. Chapelle, B. Schölkopf, A. Zien. Semi-Supervised
Learning. MIT Press, Cambridge, MA, 2006.

[3] I. Cohen, F. G. Cozman, N. Sebe, M. C. Cirelo,
T. S. Huang. Semisupervised learning of classifiers:
Theory, algorithms, and their application to human-
computer interaction. IEEE Trans. on Pattern Analysis
and Machine Intelligence, 26(12):1553–1568, 2004.

[4] F. G. Cozman, I. Cohen. Unlabeled data can degrade
classification performance of generative classifiers. In
Proc. 15th Intl. FLAIR Conf., Pensacola, FL, pp. 327–
331, 2002.

[5] P. Domingos, G. Hulten. A general framework for
mining massive data streams. Journal of Computa-
tional and Graphical Statistics, 12(4):945–949, 2003.

[6] P.E. Hart. The condensed nearest neighbor rule. IEEE
Trans. on Information Theory, 14(3):515–516, 1968.

[7] M. G. Kelly, D. J. Hand, N. M. Adams. The impact
of changing populations on classifier performance. In
Proc. 5th ACM Intl. Conf. on Knowledge Discovery
and Data Mining, San Diego, CA, pp. 367–371, 1999.

[8] M. A. Maloof, R. S. Michalski. Selecting exam-
ples for partial memory learning. Machine Learning,
41(1):27–52, 2000.

[9] G. Nagy. Classifiers that improve with use. In Proc.
Conf. on Pattern Recognition and Multimedia, Tokyo,
Japan, pp. 79–86, 2004.

[10] H. Nakayama, K. Yoshii. Active forgetting in machine
learning and its application to financial problems. In
Proc. Intl. Joint Conf. on Neural Networks, Como,
Italy, pp. 123–128, 2000.

[11] N. C. Oza. Online Ensemble Learning. PhD thesis,
University of California, Berkeley, CA, 2001.

[12] B. D. Ripley. Pattern Recognition and Neural Net-
works. Cambridge University Press, 1996.

[13] F. Roli. Semi-supervised multiple classifier systems:
Background and research directions. In Proc. 6th
Intl. Workshop on Multiple Classifier Systems, Sea-
side, CA, pp. 1–11, 2005.

[14] M. Salganicoff. Density-adaptive learning and forget-
ting. In Proc. 10th Intl. Conf. on Machine Learning,
Amherst, MA, pp. 276–283, 1993.

[15] M. Seeger. Learning with labeled and unlabeled data.
Technical Report, University of Edinburgh, UK, 2002.

[16] D. R. Wilson, T. R. Martinez. Reduction tech-
niques for instance-based learning algorithms. Ma-
chine Learning, 38(3):257–286, 2000.

[17] X. Zhu. Semi-supervised learning literature survey.
Technical Report 1530, Computer Sciences, Univer-
sity of Wisconsin, Madison, WI, 2005.

874874

