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Abstract—Kappa-error diagrams are used to gain insights about why an ensemble method is better than another on a given data set.

A point on the diagram corresponds to a pair of classifiers. The x-axis is the pairwise diversity (kappa), and the y-axis is the averaged

individual error. In this study, kappa is calculated from the 2� 2 correct/wrong contingency matrix. We derive a lower bound on kappa

which determines the feasible part of the kappa-error diagram. Simulations and experiments with real data show that there is

unoccupied feasible space on the diagram corresponding to (hypothetical) better ensembles, and that individual accuracy is the

leading factor in improving the ensemble accuracy.

Index Terms—Classifier ensembles, kappa-error diagrams, ensemble diversity, limits

Ç

1 INTRODUCTION

CLASSIFIER ensembles (multiple classifier systems) have
now shown their potential for solving challenging real-

life problems, an example of which is predicting users’ film
preferences in the high-profile Netflix competition.1 Multi-
ple classifier systems have been studied extensively in the
past 10-15 years [24], and a wide collection of approaches,
methods, and algorithms has been created [6], [7], [13], [19],
[26], [23].

The success of classifier ensembles is often attributed to
the concept of diversity. Many attempts have been made to
define, explain, and measure diversity in classifier ensem-
bles, and to relate it with the ensemble accuracy [5], [14],
[16], [25], and yet diversity is often listed among the open
questions about ensemble classification [21]. The relation-
ship between certain measures of diversity and the
classification margin theory has been demonstrated, ex-
plaining why large diversity maybe preferable [25]. The
common wisdom now is that while diversity is an
important factor for the ensemble accuracy, their inter-
dependence is not straightforward. This discourages con-
structing ensemble methods by handling diversity explicitly
[25]. Regardless of the theoretical doubts and the limited
success thus far, explicit handling of diversity seems to be
still an appealing research perspective [1], [11], [18].

A popular tool for analyzing ensemble methods is the
so-called kappa-error diagrams proposed by Margineantu
and Dietterich [17]. Kappa error diagrams visualize
individual accuracy and diversity in a 2D plot, and have
been used to decide which ensemble members can be
pruned without much harm to the overall performance [17],

[22]. An ensemble of L classifiers is shown on the diagram
as a scatterplot (a “cloud”) of LðL� 1Þ=2 points, each
corresponding to a pair of classifiers. The x-coordinate is a
diversity measure of the pair, �, which is also known as the
interrater agreement [8]. Smaller values of kappa indicate
high diversity, � ¼ 0 indicates independent classifiers, and
� ¼ 1, identical classifiers. The y-coordinate is the averaged
individual error rate of the classifier pair. Thus, points that
are closer to the bottom left corner of the diagram are
preferable (high diversity and low error).

Note that the exact left bottom corner at ð�1; 0Þ is not
achievable. Classifiers that are ideally accurate (e ¼ 0) will
be identical; therefore, � ¼ 1. For each ensemble, a
compromise between diversity and individual accuracy
must be negotiated. The clouds corresponding to different
ensembles, plotted on the same diagram, usually form a
“belly” whereby ensembles with higher diversity have
higher errors and vice versa.

It is curious to find out why this belly-shaped pattern
exists, and how close a pair of classifiers can be to the
bottom left corner of the diagram. The objective of this
paper is to derive and illustrate with examples a tight lower
bound on the kappa-error diagram, which delineates its
feasible region.

The rest of the paper is organized as follows. Section 2
gives the derivation of the bound, Section 3 contains a
simulation study, and Section 4 contains an illustration with
31 real data sets and five classifier ensemble methods.

2 DERIVATION OF THE BOUND

The interrater agreement measure � can be calculated from
two different perspectives. First, disregarding the issue of
correct or wrong classification, � can be used to measure to
what extent the classifiers agree in assigning the class labels.
Second, kappa can be used to measure to what extent the
classifiers agree in assigning the correct label, regardless of
the class assignment. Diagrams with both choices of kappa
exhibit the belly-shaped pattern. In this study, we chose the
second perspective because it lends itself to the algebraic
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manipulations necessary to derive the bound, and is equally
useful for analyzing classifier ensembles. The ensemble
analyzes and comparisons are usually carried out offline,
when training and testing have been completed. Typically,

no decision about the training of a particular ensemble is
made through the kappa-error analysis. Then, the indivi-
dual errors of the classifiers and the ensembles (on the

testing data) are readily available, and can be fed into the
kappa-error calculations.

Consider N data points and the contingency table of two

classifiers, C1 and C2

where the table entries are the number of points jointly
classified as indicated, and aþ bþ cþ d ¼ N .

The averaged individual error for the pair of classifiers is

e ¼ 1

2

cþ d
N
þ bþ d

N

� �
¼ bþ cþ 2d

2N
: ð1Þ

Diversity between the two classifiers is measured by �

[8], which is constructed as

� ¼ OA�AC

1�AC
; ð2Þ

where OA is the observed agreement, i.e., the probability
that the two classifiers will be both correct or both incorrect
when classifying a randomly chosen data point. AC is the
agreement by chance, i.e., the probability that the two
classifiers will agree by chance on a randomly chosen data

point. The two quantities are calculated as

OA ¼ aþ d
N

ð3Þ

AC ¼ ðaþ bÞðaþ cÞ þ ðbþ dÞðcþ dÞ
N2

: ð4Þ

Substituting in (2) and rearranging the terms, we obtain

� ¼ 2ðad� bcÞ
ðaþ bÞðbþ dÞ þ ðaþ cÞðcþ dÞ : ð5Þ

To facilitate further analyses, it will be convenient to

express � in terms of e and N . We can express a and d as
functions of b, c, e, andN and substitute in (5), which leads to

� ¼ 1� 2Nðbþ cÞ
4N2eð1� eÞ þ ðb� cÞ2

: ð6Þ

The only restrictions on the values of a; b; c, and d so far are

that each is nonnegative and they sum up to N . For a fixed e
and ðbþ cÞ, if b 6¼ c, there will be a positive term ðb� cÞ2 in
the denominator, which will decrease the fraction, and
therefore increase �. By requiring that b ¼ c, and hence
dropping the respective term from the denominator, a

smaller � is obtained

�0 ¼ 1� 2b

2Neð1� eÞ ¼ 1� b

Neð1� eÞ � �: ð7Þ

The minimum value of kappa will be obtained for the
largest possible b for the fixed e. To find this value, consider
the following system of equations and inequalities:

e ¼ bþ cþ 2d

2N
¼ bþ d

N
error ð8Þ

2bþ d � N total count ð9Þ

d � 0 nonnegativity: ð10Þ

Expressing d from (8), d ¼ Ne� b, and substituting in (9),

we obtain

b � Nð1� eÞ:

On the other hand, substituting in (10),

b � Ne:

Since both must be satisfied,

bmax ¼ minfNð1� eÞ; Neg:

If e � 0:5, bmax ¼ Ne and for e > 0:5, bmax ¼ Nð1� eÞ. Then,

the minimum � is given by

�min ¼
1� 1

1� e ; if 0 < e � 0:5

1� 1

e
; if 0:5 < e < 1:

8><
>: ð11Þ

Note that the bound is tight. It is achievable for b ¼ c and

d ¼ maxf0; ðe� 0:5ÞNg. The bound is plotted in Fig. 1. The

upper branch, plotted with a dashed line, is of less interest

because it corresponds to individual error for the pair of

classifiers e > 0:5. The lower branch is the “target” part of the

bound, where better ensembles are expected to be found.
The bound itself is not directly related to the ensemble

performance. It is expected that ensembles that have

classifier pairs closer to the bound will fare better than

ensembles that are far away. The bound helps by giving

additional insight about the extent of theoretically possible

improvement of the ensemble members. It does not

however prescribe the way of creating these classifiers.
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Fig. 1. Kappa-error diagram of 20,000 simulated classifier pairs and the
bound.



3 A SIMULATION STUDY

Fig. 1 shows the results from 20,000 simulated classifier

pairs. The number of data points was fixed at N ¼ 200 for

each contingency table. The N points were randomly split to

fill in the a, b, c, and d values in the contingency table. Each

classifier pair is a point on the plot, where the coordinates �

and e are calculated as in (1) and (5). The bound (11) is

drawn with a solid black line for e � 0:5 and with a dashed

line for e > 0:5.
Next, we generated randomly 1,000 ensembles of L ¼ 3

classifiers. Each ensemble was a three-way contingency

table with eight entries: N000; N001; . . . ; N111. The value Nxxx

is the number of data points that have been classified

correctly (x ¼ 1) or wrongly (x ¼ 0) by classifiers 1, 2, and 3,

respectively. For example, N011 is the number of points

classified correctly by classifiers 2 and 3 and misclassified
by classifier 1. The integers Nxxx were generated randomly
so that

P
xxx Nxxx ¼ N . The majority vote accuracy can be

calculated from the three-way contingency table as

Pmaj ¼
1

N
ðN110 þN101 þN011 þN111Þ: ð12Þ

Fig. 2 illustrates the random ensembles. Each ensemble is
depicted as a triangle where the three classifier pairs in the
ensemble (points) are linked with green lines. In the
geometric centre of each triangle, a black dot is plotted to
indicate the centre of the ensemble “cloud.” The size of the
dot is a gauge of the ensemble accuracy. Ensembles with
higher majority vote accuracy are shown with larger dots. A
tendency can be observed: ensembles that have more
accurate individual classifiers (the triangle is lower down
on the y-axis) are better. This tendency is mirrored in the
experiments with real data and with ensembles of size
L ¼ 1;000, shown later. Interestingly, diversity does not
play such big a role as might be expected. The size of the
centre points increases slightly to the left (toward smaller �,
hence large diversity) but the error-related tendency is
much more pronounced. This suggests that in order to
create small ensembles with high majority vote accuracy,
we should strive to obtain accurate individual classifiers
and be less concerned about their diversity. We note that,
while the bound on the diagram is valid for any ensemble
method, Fig. 2 gives insights only about the majority vote of
ensembles of three classifiers.

Shown in Fig. 3 is the surface of the ensemble accuracy
over the kappa-error diagram. The contours of the surface
are projected on the diagram. The data for this plot were
approximated from the 1,000 random ensembles used to
produce Fig. 2. The peak toward the lower branch of the
bound suggests that low individual error and high
diversity, in combination, lead to better ensembles. It is also
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Fig. 2. Kappa-error diagram of 1,000 simulated ensembles of three
classifiers. The size of the dots represent the majority vote accuracy of
the ensemble—the larger the dot, the higher the accuracy.

Fig. 3. Surface of the ensemble accuracy of the simulated classifier ensembles.



clear from the steep descent of the surface toward the

higher branch of the bound, that high diversity is harmful if

the individual error is high.

4 ILLUSTRATION WITH REAL DATA

We used 31 data sets from the UCI repository [9] and a

private collection2 as indicated in Table 1. Notice that the

purpose of the experiments was not to compare classifier

ensemble methods across data sets but to illustrate how the

new bound can be used as a reference point in such analyses.

More specifically, we seek to answer the following questions:

. Question 1. Which part of the kappa-error diagram
is occupied by the clouds representing the classical
ensemble methods (Bagging (BA), AdaBoost (AD),
and Random Subspace (RS)) and some more recent
methods (Rotation Forest (RF) and Random Oracle
(RO))? How close are these clouds to the bound
proposed here?

. Question 2. What leverage do we have to move the
ensemble clouds on the diagram toward more

desirable feasible spaces? In other words, what
effect do ensemble parameters have on the position-
ing of the cloud of points? For example, does a larger
ensemble size expand the cloud in the direction of
the bound? Does a change of the base classifier
model affect the position of the cloud?

The methods for creating classifier ensembles use
different heuristics and theories to achieve simultaneous
individual accuracy and diversity. The following classifier
ensemble methods were considered here:

1. Bagging [3]. L bootstrap samples of the data are
taken and a classifier is trained on each sample. The
joint decision is made by aggregating the individual
classifier votes. The most popular aggregation
method is the majority vote. Bagging has been found
to be robust to noise, and is known to reduce the
variance of the individual classifiers [2], making it a
necessary benchmark contestant in any classifier
ensemble experimental study.

2. AdaBoost [10]. The ensemble is constructed sequen-
tially. The new classifier is trained on a data set that
is sampled from the initial data set, so that the
instances that were difficult for the previous
ensemble members get more exposure. The decision
is made by weighted majority voting. AdaBoost has
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TABLE 1
Accuracy (10-Fold Cross Validation) [in Percent] for the Five Ensemble Methods and the Real Data Sets

2. Available at http://pages.bangor.ac.uk/~mas00a/activities/artificial_
data.htm and http://pages.bangor.ac.uk/~mas00a/activities/real_data.
htm.



been declared in the past to be the “best off-the-shelf
classifier” [4]. A host of advanced AdaBoost variants
have been proposed including LogitBoost, Ave-
Boost, Gentle AdaBoost, Modest AdaBoost, and
more. AdaBoost is sensitive to noise but increases
the ensemble diversity in a clever implicit way. It
was found to reduce both variance and bias of the
error of the individual classifiers. AdaBoost sacri-
fices individual accuracy for diversity; hence, the
respective cloud on the kappa-error diagram is
usually oblong, tilted to the left, and situated
slightly North-West from the cloud of the Bagging
ensemble for the same data.

3. Random Subspace [12]. L subsets of features are
sampled randomly from the feature set, and a
classifier is trained on each subspace. The results
depend heavily on the data sets; most often this
method increases diversity, but not as much as
AdaBoost.

4. Rotation Forest [20]. By design, this ensemble method
is aimed at increasing diversity between the classi-
fiers without, if possible, sacrificing individual
accuracy. Bagging and AdaBoost take samples from
the data; therefore, none of the individual classifiers
gets to “see” the whole training data sets. Random
Subspace, on the other hand, may use all of the
instances to train each individual classifier but sheds
features to create diversity. Rotation Forest uses
decision tree classifiers, as suggested by its name.
Each classifier is trained on the whole data set using
extracted features. These are formed through a
combination of partial rotations of the feature space
through Principal Component Analysis (PCA).
Thus, the cloud of the Rotation Forest ensemble is
expected to appear left to that of Bagging and
underneath these of AdaBoost and Random Sub-
space. The diversity introduced through RF is not as
high as that due to AdaBoost or Random Subspace
but, as argued in Section 3, diversity seems to be less
important than the individual accuracy.

5. Random Oracle [15]. Each member of the ensemble is a
miniensemble itself. To build an ensemble member, a
random oracle is constructed, for example by split-
ting the space with a random hyperplane (Random

Linear Oracle). The data are split according to the
oracle, and a separate classifier is trained for each
half-space. When a new instance comes for classifica-
tion, the ensemble member applies the oracle, and the
classifier responsible for the instance offers a class
label, taken to be the label proposed by the ensemble
member. This method will work if the data set is large
enough to ensure that the classifiers in the two half-
spaces are adequately trained.

Table 1 shows the classification accuracy with the five
classifier ensemble methods and the 31 data sets for
ensemble sizes L ¼ 11 and L ¼ 1;000. The accuracy is
calculated through a 10-fold cross validation, where the
folds were kept the same for all ensemble methods. The left
subtable shows the accuracies with the decision tree
classifier as implemented within the Statistics Toolbox of
Matlab, while the middle and the right subtables show the
ensemble accuracies with a linear base classifier. No
parameters were optimized within the experiment. All
code was written in Matlab. The highest accuracy for each
data set and each subtable is underlined.

Even though the ensemble accuracy depends primarily
on the data set, with the reasonably sized collection used
here, it is interesting to look for a general pattern. Fig. 4
shows the kappa-error plots for the 31 data sets and the five
ensemble methods. The plots of all ensemble methods and
data sets for a specific L and base classifier are overlaid. The
ensemble accuracy is indicated by color. Lighter color
signifies lower accuracy.

Indeed, the plots demonstrate several general tendencies:

. Ensemble accuracy is higher (darker color) for
clouds closer to the bound.

. The darker color toward the bottom right corner
confirms the result observed in the simulations: the
individual accuracy is the dominant factor for better
ensemble accuracy.

. There is feasible unoccupied space in the diagram,
where ensembles of higher accuracy may be
engineered.

. Increasing the ensemble size leads to more dense
clouds, creating outliers which lie closer to the bound,
paving the ground for ensemble pruning methods.

. Interestingly, for the same ensemble construction
methods and the same ensemble size L ¼ 11, the
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Fig. 4. Kappa-error diagram of the five ensemble methods on the 31 real data sets, L ¼ 1;000, linear base classifiers.



linear classifiers outreach the decision tree classifiers,
having more “accidental” classifier pairs closer to the
bound (compare subplots (a) and (b)). However, they
also generate more clouds toward the right edge of
the diagram (� ¼ 1) showing low diversity.

The following examples illustrate further some of the
observed points. Fig. 5 is a “zoom” of the ensemble clouds
for the pima data. The individual ensembles are shown with
different marker and color.

The relative positioning of the clouds matches the
expectation to a large extent, placing Bagging as the one of
the most accurate and least diverse methods and Adaboost
as the most diverse and least accurate one. As observed in
the simulations, when relatively small ensemble sizes are
involved, the accuracy of the individual classifiers is the
dominant factor for the success of the ensemble. The belly
shape of the overall cloud is clearly visible. Fig. 6 relates this
shape to the proposed bound. We join the points that form
a Pareto-optimal set to mark the front edge of the cloud. These
points correspond to the nondominated pairs of classifiers. A
pair is called nondominated if there is no other pair that has

both lower error and higher diversity. The large gap between
the bound and the cloud edge suggests that, in theory, there
could be classifier ensemble pairs with better diversity-error
values, hopefully leading to better overall ensembles. For a
point to reside on the bound, the two classifiers must have
exactly the same error and be highly dependent in that there
should be no points misclassified simultaneously. It is
unlikely that this case will appear in real data, and it is
difficult to engineer such classifier pairs artificially.

For large ensembles, the clouds on the kappa-error
diagram are expected to be denser and larger, but not
shifted. Fig. 7 shows a comparison between the front edge of
the cloud of points containing all ensemble methods for
ensemble sizes L ¼ 11 and L ¼ 1;000. The points for L ¼ 11
are inset with black dots within the larger cloud for
L ¼ 1;000. Expectedly, the edge is shifted in the direction of
the bound which prompts the idea of constructing an
ensemble by selecting a subset of ensemble members; the
same idea that underpinned the study of Margineantu and
Dietterich [17] where the kappa-error diagrams were first
introduced. It turned out that manual or heuristic selection of
the ensemble members has not led to dramatically better
ensembles. The kappa-error bound may give a new perspec-
tive on the evaluation of the merit of classifier pairs and open
new possibilities for creating ensembles by selection.

To demonstrate in more detail the effect of using a
different base classifier on the positioning of the ensemble
clouds (part of Question 2), we chose pima data with L ¼ 11
and the linear classifier. The results are plotted in Fig. 8, and
the classification accuracies are indicated as in Fig. 5.

The front edge of the cloud has the same shape;
however, the whole cloud is shifted a little down and to
the right, indicating higher accuracy and lower diversity.
Fig. 9 shows the two Pareto-optimal edges. Interestingly,
the Rotation Forest is no longer a competitive ensemble
method contributing to the Pareto-optimal set of classifier
pairs. Its accuracy drops substantially, most likely because
the linear classifier is not sensitive to the heuristics which
ensure diversity for this ensemble method, while the
decision tree classifier is.
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Fig. 5. Kappa-error diagrams for the pima data with ensemble sizeL ¼ 11
and tree classifiers.

Fig. 6. Position of the pima (L ¼ 11) cloud in relation to the bound.

Fig. 7. Position of the two pima clouds and their front edges.



The most noticeable accuracy gain resulting from switch-
ing the classifier models is achieved by Adaboost. To
examine the cause for this, Fig. 10 shows the two clouds
together. The results indicate that for small ensemble sizes,
sacrificing diversity for individual accuracy is justifiable.

To summarize, the ensemble clouds usually lie far from
the feasible lower bound. One way to use up the space is to
increase the ensemble size, possibly followed by a classifier
selection procedure. Changing the base classifier type can
alter the position of the ensemble cloud.

5 CONCLUSIONS

Kappa-error diagrams have been used for getting insights
in comparing classifier ensembles. In this study, we chose
pairwise diversity kappa calculated from the 2� 2 con-
tingency matrix of correct/wrong classification. We derive
a bound which determines the best achievable tradeoff
between individual accuracy and diversity. The experi-
mental results demonstrate that there is unoccupied feasible

space on the diagram for new ensemble methods. We also

found through simulations and real-data experiments that

individual accuracy is the leading factor for the ensemble

success compared to ensemble diversity.
It is interesting to investigate how the shape of the

ensemble cloud is related to the ensemble accuracy. Such an

analysis may spawn new ensemble creation methods

which, like AdaBoost, construct the ensemble sequentially

so that a certain cloud shape is achieved.
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