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Abstract

While there is a lot of research on change detec-

tion based on the streaming classification error, find-

ing changes in multidimensional unlabelled streaming

data is still a challenge. Here we propose to apply prin-

cipal component analysis (PCA) to the training data,

and mine the stream of selected principal components

for change in the distribution. A recently proposed

semi-parametric log-likelihood change detector (SPLL)

is applied to the raw and the PCA streams in an exper-

iment involving 26 data sets and an artificially induced

change. The results show that feature extraction prior to

the change detection is beneficial across different data

set types, and specifically for data with multiple bal-

anced classes.

1. Introduction

Adaptive classification in the presence of concept

drift is one of the main challenges of modern machine

learning and data mining [14].1 The increasing interest

in this field reflects the abundance of application areas,

including engineering, finance, medicine and comput-

ing. Monitoring a single variable such as the classifica-

tion error rate has been thoroughly studied [2, 6, 9–11].

However, in many applications, the class labels of the

streaming data are not readily available, and thus the

error rate cannot serve as a performance gage.

An indirect performance indicator would be a change

in the distribution of the streaming data. There are at

least two caveats related to this approach. First, the

concept of change becomes context-dependent. For ex-

ample, in comparing X-ray images, a hair-line discrep-

ancy in a relevant segment of the image may be a sign

1See also http://www.cs.waikato.ac.nz/˜abifet/

PAKDD2011/.

of an important change. At the same time, if colour

distribution is monitored, such a change will be left un-

registered. Second, not all substantial changes of the

distribution of the unlabelled data will manifest them-

selves as an increase of the error rate of the classifier.

In some cases the same classifier may still be optimal

for the new distributions. Hence there are two starting

assumptions: (1) changes likely to affect adversely the

performance of the classifier are detectable from the un-

labelled data, and (2) changes of the distribution of the

unlabelled data will be reasonably correlated with the

classification error.

Our research hypothesis is that feature extraction is

beneficial for change detection from multidimensional

unlabelled streaming data. Section 2 gives the details of

the proposed approach and the change detecting crite-

rion. Section 3 contains the experiment, and Section 4,

the conclusions.

2. Feature extraction for change detection

There is a rich body of literature on change detec-

tion including strategies for choosing, sampling, split-

ting, growing and shrinking a pair of sliding windows

for optimal change detection [2,6,13]. Here we assume

that the two windows of data, W1 and W2, are given.

The first window contains the training data, and the sec-

ond window is a sample from the streaming data.

Figure 1 shows the two major scenarios for change

detection. When the labels of the data are available

straight after classification, or even with some delay,

the classification error can be monitored directly. When

substantial increase is found, change is signalled. Most

of the existing change detection methods and criteria are

developed under this assumption.

Within the second scenario, labels are not available,

and the question is whether the streaming data distribu-

tion matches the training one. The two scenarios share a
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distribution modelling block in the diagram. The mod-

elling is sometimes implicit, and is included in the cal-

culation of the change detection criterion. Compared

to the multi-dimensional case, approximating distribu-

tions in the one-dimensional case can be much more

accurate and useful. This explains the greater interest

in the one-dimensional case. Methods such as Hidden

Markov Models (HMM), Gaussian Mixture Modelling

(GMM), Parzen windows, kernel-based approximation

and martingales have been proposed for this task. The

most common approach to the multidimensional case is

clustering [5] followed by monitoring of the clusters’

characteristics over time. Song et al. [12] propose a

kernel estimation, and Dasu et al. [3] consider approx-

imation via kdq-trees. A straightforward solution from

statistics is to treat the two windows as two groups and

apply the Hotelling’s t2 test to check whether the means

of the two groups are the same [7]. The output of the

data modelling block, which can also be labelled “cri-

terion evaluation”, is a value that is compared with a

threshold to declare change or no change.

We propose the Feature extraction block, highlighted

in the diagram. Our rationale for inserting an extra

block in the unlabelled scenario is that distribution mod-

elling of multidimensional raw data may be difficult. In-

tuitively, extracting features which are meant to capture

and represent the distribution in a lower dimensional

space may simplify this task.

We use a recently proposed semi-parametric log-

likelihood criterion (SPLL) for change detection [8]. It

comes as a special case of a log-likelihood framework

and is modified to ensure computational simplicity. The

SPLL statistic is calculated as follows. (1) Cluster the

data in W1 into K clusters using the k-means algorithm

(K is a parameter of the algorithm; it was found that

K = 3 works well). (2) Calculate the weighted intra-

cluster covariance matrix S. (3) For each object in win-

dow W2, calculate the Mahalanobis distance to each

cluster centre using S−1. Calculate the average of the

minimum distances as

SPLL(W1,W2) =
1

M2

∑

x∈W2

(x−µi∗)
TS−1(x−µi∗),

where µi∗ is the centre of the cluster closest to x and

M2 is the number of objects in window W2. The cri-

terion is derived as the upper limit of the negative log-

likelihood of the sample in W2 with respect to the ap-

proximated distribution from W1. If W2 comes from

the same distribution as W1, the squared Mahalanobis

distances have a chi-square distribution with n degrees

of freedom (where n is the dimensionality of the feature

space). Leaving the problem of determining an optimal

threshold aside, we are more interested in finding out

whether the SPLL statistic correlates with the classifi-

cation accuracy. Since larger values of SPLL indicate

change, large negative correlations are desirable. We

expect the correlation between SPLL and the accuracy

to be stronger for the PCA features compared to that for

the raw data.

3. Experiment

The experiment was run on 26 data sets listed al-

phabetically in Table 1, with differing numbers of in-

stances, features and classes. The sets were sourced

from UCI [1] and a private collection. The experiment

compared the correlation of the SPLL change statistic

and classifier accuracy, with and without PCA. We used

the SVM classifier from the MATLAB bioinformatics

toolbox. PCA is beneficial if it results in a stronger

negative correlation of the change statistic and classi-

fier accuracy. Our initial hypothesis was that the more

relevant PCs will lead to better change detection. A pi-

lot experiment revealed that, in fact, the opposite is true.

The PCs responsible for the last 10% of the variability

of the data were more indicative of change and can be

used for identifying outliers [4]. The following proce-

dure was applied 30 times to each data set

(1) Take a stratified random sample of size M as the

window with the training data, W1, and train an SVM

classifier on it.

(2) Run PCA on W1 and keep the components respon-

sible for the last 10% of the variance of the data.

(3) Construct a random sample of 1000 instances from

the remaining data as an i.i.d. testing data stream, and

induce artificial concept drift between time moments T1

and T2 by setting k features to zero.

(4) Run a sliding window W2 of size M along the test-

ing stream. Calculate and store SPLL(W1,W2) on the

row data and on the PCA-transformed data. Calculate

and store the classification accuracy of the SVM on W2.

(5) Calculate the correlation coefficient between the

classification accuracy and the two SPLL change statis-

tics.

In this experiment we used M = 50, T1 = 300,

T2 = 450, and k was set to 1/6 and 1/4 of all features.

The change that we applied reflects a possible real-life

case where a group of sensors stop working due to a

technical fault. The results are shown in Table 1. The

correlation coefficient between the classification accu-

racy and SPLL calculated from the raw data is denoted

by ρraw, and the one for the features extracted through

PCA, by ρPCA. The coefficients where the PCA “wins”

over the raw data detection are underlined. Using the 30
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Figure 1. Feature extraction for change detection

replicas of the experiment, we carried out a paired two-

tailed t-test for each data set. Statistically significant

differences (α = 0.05) are indicated in the table with •

if PCA was better, and with ◦ if the raw data detection

was better. The results can be summarised as follows

with respect to PCA versus raw data:

Wins(α=0.05) Better Draw Losses

1/6th zeros 12 18 13 1

1/4th zeros 13 21 13 0

The results demonstrate that feature extraction

through PCA leads to better change detection and there-

fore stronger correlation with the classification accuracy

than using the raw unlabelled data. We carried out fur-

ther analyses to establish which characteristics of the

data sets may be related to the feature extraction suc-

cess. Figure 2 shows a scatter plot where each point

corresponds to a data set for the 1/6th null features ex-

periment (the less favourable of the two). The x-axis is

the prior probability of the largest class and the y-axis

is the prior probability of the smallest class. The fea-

sible space is within a triangle, as shown in the figure.

The right edge corresponds to 2-class problems, and the

number of classes increases from this edge towards the

origin (0,0). The left edge of the triangle corresponds

to equiprobable classes. This edge can be thought of as

the edge of balanced problems. The balance disappears

towards the bottom right corner. The pinnacle of the

triangle corresponds to two equiprobable classes. The

marker signifies which of the two approaches is bet-

ter. Diamond marker means that PCA wins over the

raw data, and a circle around it indicates that the differ-

ence is found to be statistically significant. The data sets

where PCA was worse than raw data are shown with

triangle markers. The only significant difference in that

direction is indicated with a square around the triangle.
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Figure 2. Winning approach for 1/6th null fea-

tures (diamond = PCA, triangle = raw data)

The figure suggests that the PCA has a stable and

consistent behaviour for multi-class, fairly balanced

data sets (bottom left of the scatterplot). For imbalanced

classes (bottom right) raw data gave better results.

4. Conclusions

We propose PCA feature extraction for change de-

tection in unlabelled, multidimensional streaming data.

We carried out an experiment where we simulated

equipment fault through setting a proportion of all fea-
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Table 1. Results on streaming data classification with three induced changes.

Sixth null Quarter null

Name n c N
Nmax

Nmin

% PCA ρraw ρPCA ρraw ρPCA

breast 9 2 277 2.42 62 -2.6 -8.2– 0.1 -22.7•

contraceptives 9 3 1473 1.89 96 -7.9 -22.3• -4.0 -21.4•

glass 9 6 214 8.44 72 -37.1 -75.5• -23.6 -89.9•

image 19 7 2310 1.00 88 -0.9 -55.1• 0.8 -69.1•

ionosphere 34 2 351 1.79 73 -5.2 -37.6• -17.7 -42.1•

iris 4 3 150 1.00 100 -89.7 -91.0– -89.8 -87.0–

isolet 617 26 1559 1.02 96 -27.8 -87.0• -16.2 -89.1•

laryngeal3 16 3 353 4.11 94 -17.9 -8.3– -9.8 -18.6–

letters 16 26 20000 1.11 54 -60.4 -75.6• -64.5 -80.8•

liver 6 2 345 1.38 73 -16.8 -12.5– -39.4 -34.5–

madelon 500 2 2600 1.00 93 -13.1 -15.4– -13.4 -14.9–

magic telescope 10 2 19020 1.84 72 -30.1 -27.4– -24.2 -21.1–

multiple features 649 10 2000 1.00 100 -4.5 -64.5• -4.6 -76.0•

OCR digits 64 10 5620 1.03 78 -0.9 -12.7• -4.7 -5.9–

page blocks 10 5 5473 175.46 100 -15.1 -11.8– -24.6 -9.9–

pendigits 16 10 10992 1.08 66 -49.5 -87.8• -33.8 -87.3•

pima 8 2 768 1.87 91 -22.8 -28.9– -11.7 -20.1–

robot 24 4 5456 6.72 50 -34.8 -34.0– -54.1 -53.4–

satimage 36 6 6435 2.45 94 -84.3 -91.2• -87.7 -94.7•

scrapie 14 2 3113 4.86 46 -0.4 8.2– -0.0 -4.8–

shuttle 9 7 58000 4558.60 99 -34.0 -8.1◦ -22.2 -35.3–

sonar 60 2 208 1.14 85 -23.9 -25.9– -43.1 -47.2•

soybean large 35 15 266 4.00 73 -4.8 -12.0– -4.4 -30.6•

voice 9 10 9 428 16.43 90 -40.1 -39.9– -26.1 -34.4–

wine quality 11 7 4898 439.60 97 -63.3 -67.4• -48.9 -51.2–

yeast 8 10 1484 92.60 43 3.2 -32.1• -5.5 -39.4•

tures to 0 for a period of time. We found that many data

sets benefit significantly from using the PCA.

The main purpose of this paper was proof of concept.

Other feature extraction methods, classifiers, detectors,

type of changes, non-i.i.d. data streams, etc., should be

examined to gain more insight into the potential of fea-

ture extraction for change detection in streaming data.
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