
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 1, JANUARY 2014 69

PCA Feature Extraction for Change Detection in
Multidimensional Unlabeled Data
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Abstract— When classifiers are deployed in real-world appli-
cations, it is assumed that the distribution of the incoming
data matches the distribution of the data used to train the
classifier. This assumption is often incorrect, which necessitates
some form of change detection or adaptive classification. While
there has been a lot of work on change detection based on the
classification error monitored over the course of the operation of
the classifier, finding changes in multidimensional unlabeled data
is still a challenge. Here, we propose to apply principal compo-
nent analysis (PCA) for feature extraction prior to the change
detection. Supported by a theoretical example, we argue that the
components with the lowest variance should be retained as the
extracted features because they are more likely to be affected
by a change. We chose a recently proposed semiparametric log-
likelihood change detection criterion that is sensitive to changes
in both mean and variance of the multidimensional distribution.
An experiment with 35 datasets and an illustration with a simple
video segmentation demonstrate the advantage of using extracted
features compared to raw data. Further analysis shows that
feature extraction through PCA is beneficial, specifically for data
with multiple balanced classes.

Index Terms— Change detection, feature extraction, log-
likelihood detector, pattern recognition.

I. INTRODUCTION

ADAPTIVE classification in the presence of concept drift
is one of the main challenges of modern machine learn-

ing and data mining [1], [2].1 The increasing interest in
this field reflects the variety of application areas, including
engineering, finance, medicine, and computing. Monitoring a
single variable such as the classification error rate has been
thoroughly studied [3]–[10]. The most notable application is
engineering, where control charts have been used for process
quality control [4]. Classical examples of control charts are
Shewhart’s method, CUmulative SUM (CUSUM), and Wald’s
sequential probability ratio test (SPRT) [5], [11], [12]. One of
the main assets of the univariate change detection methods
is their statistical soundness. Advanced as they are, these
methods cannot handle directly multidimensional data with
concept drift.

In many applications, the class labels of the incoming data
are not readily available, and thus the error rate cannot serve as
a performance gauge. An indirect performance indicator would
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be a change in the distribution of the unlabeled multidimen-
sional data. Typically, a change detector relies on comparing
two distributions, one estimated from the old data, and one
from the new data. In addition to defining the criterion, a
strategy for finding the exact change point must be put in place.
There is a wealth of literature on such strategies, for example,
choosing, sampling, splitting, growing, and shrinking a pair of
sliding windows [8], [9], [13]–[18]. In this paper, we propose
a new approach to formulating a change detection criterion,
which can be used with any such strategy.

There are at least three caveats in choosing or designing
a criterion for change detection from multidimensional unla-
beled data. First, change detection is an ill-posed problem,
especially in high-dimensional spaces. The concept of change
is highly context-dependent. How much of a difference, and
in what feature space, constitutes a change? For example, in
comparing X-ray images, a hair-line discrepancy in a relevant
segment of the image may be a sign of an important change.
At the same time, if color distribution is monitored, such a
change will be left unregistered. The second caveat is that
not all substantial changes of the distribution of the unlabeled
data will manifest themselves as an increase of the error rate
of the classifier. In some cases, the same classifier may still be
optimal for the new distributions. Fig. 1 shows three examples
of substantial distribution changes that do not affect the error
rate of the classifier built on the original data. Conversely,
classification error may increase with an adverse change in
the class labels, without any manifestation of this change in
the distribution of the unlabeled data. An example scenario
is change of user interest preferences on a volume of articles.
Fig. 2 illustrates a label change which will corrupt the classifier
but will not be picked up by a detector operating on the
unlabeled data.

Finally, change detection depends on the window size. Small
windows would be more sensitive to change compared to large
windows.

To account for the uncertainties and lack of a clear-cut
definition, we make the following starting assumptions:
1) changes that are likely to affect adversely the performance
of the classifier are detectable from the unlabeled data;
2) changes of the distribution of the unlabeled data are
reasonably correlated with the classification error; and 3) the
window sizes for the old and the new distributions are
specified.

Given the context-dependent nature of concept change,
feature extraction can be beneficial for detecting changes.
For example, extracting edge information from frames
in a video stream can improve the detection of scene
change [19]. A more general approach to change detection in
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(a) (b) (c) (d)

Fig. 1. Example of three changes (plotted in black) that lead to the same optimal classification boundary as the original data (dashed line). (a) Original.
(b) Change 1. (c) Change 2. (d) Change 3.

(a) (b)

Fig. 2. Example of a change in classification accuracy with no change in
the unlabeled pdf. (a) Before change. (b) After change.

multivariate time series is identifying and removing stationary
subspaces [20].

In the absence of a bespoke heuristic, we propose that
principal component analysis (PCA) can be used as a general
method for feature extraction to improve change detection
from multidimensional unlabeled incoming data. The theo-
retical grounds of our approach are detailed in Section II.
Section III describes the criterion for the change detection.
Section IV contains the experiment with 35 datasets, and
Section V gives an illustration of change detection with feature
extraction for a simple video segmentation task.

II. FEATURE EXTRACTION FOR CHANGE DETECTION

Fig. 3 shows the two major scenarios for change detection.
When the labels of the data are available straight after classifi-
cation, or even with some delay, the classification error can be
monitored directly. When substantial increase is found, change
is signaled. Most of the existing change detection methods
and criteria are developed under this assumption. Within the
second scenario, labels are not available, and the question is
whether the incoming data distribution matches the training
one. The two scenarios share a distribution modeling block
in the diagram. The modeling is sometimes implicit, and is
included in the calculation of the change detection criterion.
Compared to the multidimensional case, approximating distri-
butions in the 1-D case can be much more accurate and useful.
This explains the greater interest in the 1-D case. Methods
such as hidden Markov models, Gaussian mixture modeling,
Parzen windows, kernel-based approximation, and martingales
have been proposed for this task. The most common approach
to the multidimensional case is clustering [21] followed by
monitoring of the clusters’ characteristics over time. Nikovski
and Jain [22] base their two detection methods on the average

distance between all pairs of observations, one from the old
window and one from the new window. Song et al. [23]
propose a kernel estimation, and Dasu et al. [24] consider
approximation via kdq-trees. A straightforward solution from
statistics is to treat the two windows as two groups and apply
Hotelling’s t2 test to check whether the means of the two
groups are the same [25] or the multirank test for equal
medians [26]. The output of the data modeling block, which
can also be labeled “criterion evaluation,” is a value that is
compared with a threshold to declare change or no change.

A. Rationale

We propose to include a feature extraction block (high-
lighted in the diagram). Distribution modeling of multidimen-
sional raw data is often difficult. Intuitively, extracting features
that are meant to capture and represent the distribution in a
lower dimensional space may simplify this task.

PCA is routinely used for preprocessing of multispectral
remote sensing images for the purposes of change detec-
tion [27]. The concept of change, however, is different from
the interpretation we use here. In remote sensing, change is
understood as the process of identifying differences in the state
of an object in space by observing it at different times, for
example, a vegetable canopy.

If there is no knowledge of what the change may be, it
is not clear whether the representation in a lower dimensional
space will help. Our hypothesis is that, if the change is blind to
the data distribution and class labels, the principal components
with a smaller variance will be more indicative compared to
the components with larger variance. This means that, contrary
to standard practice, the components that should be retained
and used for change detection are not the most important ones
but the least important ones. Such blind change could be,
for example, equipment failure, where signal is replaced by
random noise, or signals bleeding into one another.

By leaving the most important principal components aside,
we are not necessarily neglecting important classification
information. PCA does not take into account class labels,
and therefore less relevant components may still have high
discriminatory value.

Therefore we propose to use the components of low-
est variance for detecting a change between data windows
W1 and W2.
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Fig. 3. Feature extraction for change detection.

B. Theoretical Example

PCA merely rotates the coordinate system in �n so that
the axes are orientated along directions with progressively
decreasing variance of the data. Consider a 2-D Gaussian
dataset already rotated through PCA. Let x1 and x2 be
the principal components. The mean of the distribution is
0 = [0, 0]T and the covariance matrix is

� =
[

σ 2
1 0
0 σ 2

2

]
(1)

where σ1 > σ2 > 0. Consider a change in the original space
which leads to a new Gaussian distribution. We will examine
the projection of the change on each of the PC axes to show
that the second component (x2) is more sensitive to blind
changes than the first component (x1).

We chose one of the most widely used distance measures
between distributions, namely the Bhattacharyya distance. Let
p(y) and q(y) be probability distributions of the random
variable y. Assuming, without loss of generality, that p and q
are continuous, the Bhattacharyya distance between the two
distributions is

DB(p, q) = − ln
∫ √

p(y)q(y)dy. (2)

Denote by o1 and o2 the original distributions

o1 ≡ x1 ∼ N(0, σ 2
1 )

o2 ≡ x2 ∼ N(0, σ 2
2 )

(3)

and by c1 and c2 the respective marginal distributions after
the change.

The following propositions demonstrate that the second
principal component is more sensitive than the first one to
three standard types of changes: translation, rotation, and
change in the variance. To show this, we prove that the Bhat-
tacharyya distance between the old and the new distribution
is always larger for the second component

DB(o1, c1) < DB(o2, c2). (4)

Lemma: For univariate normal distributions, p ≡ y ∼
N(m p, σ 2

p ) and q ≡ y ∼ N(mq , σ 2
q )

DB(p, q) = −1

2
ln

(
2σpσq

σ 2
p + σ 2

q

)
+ (m p − mq)2

4(σ 2
p + σ 2

q )
. (5)

Proof: The result is arrived at by substituting the expres-
sions for the normal distributions in (2) followed by standard
algebraic manipulations.

Proposition 1: Let the change be a translation of the mean
of the original distribution to � = [�1,�2]T , where � is a
random variable following a radially symmetric distribution
centered at (0, 0). Then the following holds:

E�[sign {DB(o1, c1) − DB(o2, c2)}] < 0 (6)

where E� is the expectation across �.
Proof: A translation will change the means but not the

variances of the projected distributions c1 and c2. From the
lemma

DB(o1, c1) = −1

2
ln

(
2σ1σ1

σ 2
1 + σ 2

1

)
+ (0 − �1)

2

4(σ 2
1 + σ 2

1 )
(7)

= �2
1

8σ 2
1

. (8)

Similarly

DB(o2, c2) = �2
2

8σ 2
2

. (9)

Form the difference

DB(o1, c1) − DB(o2, c2) = �2
1

8σ 2
1

− �2
2

8σ 2
2

= 1

8

(
�1

σ1
− �2

σ2

) (
�1

σ1
+ �2

σ2

)
.

(10)
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Fig. 4. Regions determined by inequalities (11) and (12). The second
principal component is more sensitive than the first if the translation moves
the mean of the data to any point in the unshaded area.

For this difference to be negative, one of the following must
hold

σ2�1 − σ1�2 < 0 and σ2�1 + σ1�2 > 0 (11)

or

σ2�1 − σ1�2 > 0 and σ2�1 + σ1�2 < 0. (12)

The diagram in Fig. 4 illustrates the regions in the (�1,�2)
space. The shaded region contains the translation points where
the first principal component is more sensitive than the second
component. Shown in the plot are the two bisecting diagonals
where �1 = �2 and �1 = −�2. The shaded region will
always occupy less than half of the space because the slopes
of the bounding lines are σ2/σ1 < 1 and −σ2/σ1 > −1.

Let p(�) be a radially symmetrical distribution centered
at the origin, which governs the translation coordinates
�1 and �2. Denote the shaded region by R+, the nonshaded
region by R−, and the borders by R=. Then

sign {DB(o1, c1) − DB(o2, c2)}

=
⎧⎨
⎩

1, if � ∈ R+
−1, if � ∈ R−

0, if � ∈ R=.
(13)

Then

E�[sign {DB(o1, c1) − DB(o2, c2)}]
=

∫
sign{DB(o1, c1) − DB(o2, c2)}p(�)d�

(14)

= −
∫

R−
p(�)d� +

∫
R+

p(�)d�. (15)

Because of the radial symmetry of p, the integrals will be
proportional to the angles of the respective regions. The angle
between the �1 axis and line σ2�1 + σ2�2 = 0 is

α = arctan
σ2

σ1
. (16)

Since σ2
σ1

< 1, α < π
4 . Then

E�[sign {DB(o1, c1) − DB(o2, c2)}]
= 4

π
arctan

σ2

σ1
− 1 < 0. (17)

Proposition 2: Inequality (4) holds for a rotation transfor-
mation for any rotation angle θ .

Proof: The distribution after the change will be centered
at (0, 0) and rotated at θ . It will be a normal distribution with
covariance matrix �c = R�RT , where R is the rotation matrix

R =
[

cos θ − sin θ
sin θ cos θ

]
. (18)

Then

�c = R�RT

=
[

cos2(θ)σ 2
1 + sin2(θ)σ 2

2 , sin(θ) cos(θ)(σ 2
1 − σ 2

2 )

sin(θ) cos(θ)(σ 2
1 − σ 2

2 ), sin2(θ)σ 2
1 + cos2(θ)σ 2

2

]
.

(19)

The diagonal elements of �c are the respective variances of
the changed distributions c1 and c2. From the lemma, taking
into account that the second term is 0

DB(o1, c1) = −1

2
ln

⎛
⎜⎜⎝

2

√
cos2(θ) + sin2(θ)

σ 2
2

σ 2
1

1 + cos2(θ) + sin2(θ)
σ 2

2
σ 2

1

⎞
⎟⎟⎠ . (20)

Similarly

DB(o2, c2) = −1

2
ln

⎛
⎜⎜⎝

2

√
cos2(θ) + sin2(θ)

σ 2
1

σ 2
2

1 + cos2(θ) + sin2(θ)
σ 2

1
σ 2

2

⎞
⎟⎟⎠ . (21)

Noticing that the expressions are the same, apart from the
inversed ratio of the two original variances σ 2

1 and σ 2
2 , we

can form the difference DB(o1, c1) − DB(o2, c2) and prove
that it is always negative. Let t = σ 2

2 /σ 2
1 (0 < t < 1) and

a = sin2(θ) (cos2(θ) = 1 − a). Then

DB(o1, c1) − DB(o2, c2)

= −1

2
ln

(
2
√

1 − a + at

2 − a + at

)
+ 1

2
ln

⎛
⎝2

√
1 − a + a

t

2 − a + a
t

⎞
⎠

−1

2
ln

(√
1 − a + at

1 − a + a
t

(2 − a + a
t )

(2 − a + at)

)

︸ ︷︷ ︸
A

. (22)

For the difference to be negative, the argument of the loga-
rithm, A, must be greater than 1. Manipulating the inequality
A > 1 leads to

a(1 − a)
(1 + t)(1 − t)3

t2 > 0. (23)

Since 0 < t < 1, the inequality always holds; hence (4) holds,
too, for any rotation angle θ .

Proposition 3: Inequality (4) holds for a transformation
whereby the variances of both components change by the same
amount.
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Proof: Let a be a constant, a > − min{σ1, σ2}, so that
the variances of the two components after the change are
respectively (σ1 + a)2 and (σ2 + a)2. From the lemma

DB(o1, c1) = −1

2
ln

(
2σ1(σ1 + a)

σ 2
1 + (σ1 + a)2

)
(24)

DB(o2, c2) = −1

2
ln

(
2σ2(σ2 + a)

σ 2
2 + (σ2 + a)2

)
. (25)

To show that DB(o1, c1) < DB(o2, c2), it is sufficient to
show that the following function is monotonically decreasing
with respect to its argument x

f (x) = −1

2
ln

(
2x(x1 + a)

x2 + (x + a)2

)
.

The first derivative of f (x) is

∂ f

∂x
= − a2(2x + a)

2x(x + a)(x2 + (a + x)2)
.

By definition x > 0 and a > −x . Therefore the derivative is
negative, which completes the proof.

III. CHOOSING THE CHANGE DETECTION CRITERION

Here we detail a recently proposed semi-parametric log-
likelihood criterion (SPLL) for change detection [28], and
argue our choice by comparing it with three criteria used
in multidimensional change detection: Hotelling test, multi-
rank [26] and Kulback–Leibler (K-L) distance [24].

A. Semi-Parametric Log-Likelihood Change Detector (SPLL)

SPLL comes as a special case of a log-likelihood frame-
work, and is modified to ensure computational simplicity.
Suppose that the data before the change come from a Gaussian
mixture p1(x) with c components with the same covariance
matrix. The parameters of the mixture are estimated from the
first window of data W1. The change detection criterion is
derived using an upper bound of the log-likelihood of the data
in the second window, W2. The criterion is calculated as

SPLL(W1, W2) = 1

M2

∑
x∈W2

(x − μi∗)T �−1(x − μi∗) (26)

where M2 is the number of objects in W2, and

i∗ = arg
c

min
i=1

{
(x − μi )

T �−1(x − μi )
}

(27)

is the index of the component with the smallest squared
Mahalanobis distance between x and its center. If the assump-
tions for p1 are met, and if W2 comes from p1, the squared
Mahalanobis distances have a chi-square distribution with n
degrees of freedom (where n is the dimensionality of the
feature space) [29]. The expected value is n and the standard
deviation is

√
2n. If W2 does not come from the same

distribution, then the mean of the distances will deviate from
n. Too large or too small a value will indicate a change.

Here we propose to fold the criterion to make it monotonic.
This can be done by estimating p1 from W1 and assessing the
fit of the data from W2, and then swap the two windows and

calculate the criterion again. Thus the final value of SPLL will
be

SPLL = max{SPLL(W1, W2), SPLL(W2, W1)}. (28)

Given two data windows W1 and W2, the SPLL statistic is
calculated as follows: 1) cluster the data in W1 into K clusters
using the c-means algorithm (K is a parameter of the algo-
rithm; it was found that K = 3 works well); 2) calculate the
weighted intra-cluster covariance matrix S; 3) for each object
in window W2, calculate the squared Mahalanobis distance to
each cluster center using S−1, and calculate SPLL(W1, W2) as
the average of the minimum distances; 4) swap windows W1
and W2 and follow the same steps to find SPLL(W2, W1); and
5) take forward the maximum of the two values as in (28).

In practice, the SPLL assumptions are rarely met, which
makes it difficult to set up a threshold or determine a con-
fidence interval. This difficulty is not uncommon for change
detection criteria in general. Bootstrap Monte Carlo sampling
and permutation tests have been suggested for estimating a
suitable threshold [6], [23], [24]. Here we are interested in
the raw values of the criteria and will leave the problem for
selecting a threshold for future studies.

B. Comparison With Hotelling, Multirank, and K–L

We have found that SPLL statistic compares favorably for
detecting changes with its main competitor, the Hotelling t2

test [28]. The reason behind this finding is that a Gaussian
mixture is usually a more reasonable model than the single
Gaussian assumed for the Hotelling test. The Hotelling cri-
terion will not be able to detect change in the variance of
the data, while the SPLL criterion is equipped to do so. The
same holds for the nonparametric version of this test based on
multidimensional ranking. The Multirank test [26] compares
the medians of the distributions in the two windows but again
leaves aside changes in the variance.

To support our criterion choice, we include here a simulation
example. One hundred points were sampled as window W1
from a 5-D normal distribution with mean 0 and a diagonal
covariance matrix S. The variances of the features were sam-
pled from the positive half of the standard normal distribution.
Denote this distribution by P1. Window W2 was sampled once
from P1 (with the same covariance matrix) and then according
to three types of changes. Fig. 5 shows scatterplots of the two
windows in the space of the first two features.

1) Translation. A new mean was sampled from 2y, where
y ∼ N(0, 1). W2 was sampled anew from P1 and the
new mean was added [Fig. 5(b)].

2) Random linear transformation. A random matrix R of
size 5 × 5 was generated, where each element was
sampled from N(0, 1). Window W2 was sampled from
P1 and all objects were multiplied by R [Fig. 5(c)].

3) Change of variance. W2 was sampled from a normal
distribution with mean 0 and covariance matrix S × D,
where D is a diagonal matrix with diagonal elements
sampled from 3|y|, where y ∼ N(0, 1) [Fig. 5(d)].

The procedure of generating W1 and four versions of W2
was repeated 100 times. Four change detection criteria were



74 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 1, JANUARY 2014

(a) (b) (c) (d)

Fig. 5. Example of windows W1 (black) and W2 (green) for comparing the change detection criteria. (a) Same distribution. (b) Translation. (c) Random
linear transformation. (d) Change of variance.

(a) (b) (c)

Fig. 6. ROC curves for the four criteria and the three types of change. (a) Translation. (b) Random linear transformation. (c) Change of variance.

calculated: K-L distance, the Hotelling’s t2, multirank [26],
and SPLL. Both K-L and SPLL were used with three clusters.
Note that no thresholds were applied, as we were evaluating
the raw criteria values. The receiver operating characteristic
(ROC) curves were constructed for each criterion and each
change type. Fig. 6 shows the curves for the three changes.
The graphs illustrate the behavior of the four criteria. While
for the mean change the two bespoke criteria (Hotelling and
Multirank) are superior to K-L and SPLL, the two latter
changes favor SPLL. This is why we take SPLL for the exper-
iment reported in the next section. We note that the choice of
the criterion is not crucial for supporting our hypothesis that
change detection will be aided by preserving the low-variance
principal components.

IV. EXPERIMENT

A. Preliminaries

Our aim is to compare SPLL with and without PCA in order
to demonstrate the benefit of feature extraction.

1) Acid Test: It is difficult to find an acid test for change
detection in unlabeled multidimensional data. Here we chose
two change heuristics which could be regarded as instances of
equipment failure.

a) Shuffle values: A random integer k, 1 ≤ k ≤ n, was
generated to determine how many features out of n will be
affected. k random features were chosen, and the values of
each feature were randomly permuted within window W2.

b) Shuffle features: Again, a random integer k, 1 ≤
k ≤ n, was generated to determine how many features will be

affected. k random features were chosen, and their columns
were randomly permuted within window W2.

The shuffle values change resembles a case where a group
of sensors stop working as a result of a technical fault and
produce random readings within the sensor ranges. The shuffle
features change can be likened to bleeding of signals into one
another. We previously experimented with setting a number of
features to zero or infinity, but that seemed to be too easy a
change to detect.

2) Change Detection is Context-Specific: We should also
bear in mind that identifying changes is the first step in a
process. The concept of change depends on what we will be
using the result for. There could be, for example, a scenario
where a change in the mean of the distribution is irrelevant,
and only a change in the variance should be flagged. The
magnitude of change is also context-dependent. How big a
change should be accepted as worthy of triggering an alarm?

Therefore, here we do not offer a change detector as
such. We investigate the ability of a criterion (SPLL and
PCA+SPLL) to respond to changes. Setting up a threshold
for this criterion is a separate problem. Such a threshold may
be data-specific, and can be tuned to the desired level of false
positives versus true positives.

3) Indirect Detection for Classification: In the context of
classification, there may be a problem-specific threshold on the
classification error that should not be exceeded. Any changes
of the distributions of the classes that do not lead to increased
error can be perceived as insignificant.

As we argued in Section I, not all changes in the uncondi-
tional pdf will lead to change in the classification error. Thus
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a genuine change detected through the criterion may fail to
correlate with the classification error. On the other hand, clas-
sification error may suffer with no change in the distribution
of the unlabeled data. Even though such a correlation is an
indirect quality measure, we include it here because of the
importance of classification performance measure.

B. Experimental Protocol

The experiment was run on 35 datasets listed alphabetically
in Table I, with differing numbers of instances, features,
and classes. The sets were sourced from UCI [30] and a
private collection. All datasets were standardized prior to the
experiments.

1) Experiment 1: In the first experiment, we examined the
difference between change detection on raw data and PCA
data. For the PCA feature extraction, we varied the proportion
of dismissed variance as K = {0%(keep all components),
50%, 80%, 85%, 90%, and 95%}. The following procedure
was applied 50 times to each dataset.

1) Take a stratified random sample of size M as window
W1.

2) Run PCA on W1 and keep the components beyond
the K % of dismissed variance. For example, consider
K = 90% and a 4-D dataset, whose eigenvalues are
{12, 8, 5, 2}. Taking the cumulative sum and dividing
by the sum of the eigenvalues, the cumulative explained
variance (in %) is {44, 74, 93, 100}. The first three
components explain 93% of the variance in the data.
We dismiss these components and keep only the last
component which explains the remaining 7% of the
variability of the data. Denote the PCA-transformed and
clipped dataset as W1,PCA.

3) Repeat for i = 1:100.

a) Take a random sample of M instances from the
remaining data as the i.i.d. window W2. Calculate
SPLL for windows W1 and W2 as in (28) and store
the criterion value in b(i).

b) Transform W2 in the PC space using the eigen-
vectors of the retained components. Call this set
W2,PC A. Calculate SPLL for windows W1,PC A and
W2,PC A as in (28) and store the result in c(i).

c) Apply a change (described above: value shuffle or
feature shuffle) to W2 to obtain a new set called
W ′

2. Calculate SPLL for windows W1 and W ′
2 as

in (28) and store the result in b′(i).
d) Transform W ′

2 in the PC space using the eigen-
vectors of the retained components. Call this set
W ′

2,PC A. Calculate SPLL for windows W1,PC A and
W ′

2,PC A as in (28) and store the result in c′(i).
4) Concatenate the values SPLL for the cases with and

without a change, to obtain B = [b, b′] and C = [c, c′].
Calculate the ROC curves from B and C and the areas
under the curves (AUCs). If our hypothesis is correct,
the AUC for B will be smaller than the AUC for C .

2) Experiment 2: The purpose of the second experiment
was to find out how the SPLL change statistic correlates with
the classification accuracy with and without PCA.2 Larger
values of SPLL signify a change in the distribution, which
is likely to result in lower classification accuracy. Therefore
we hypothesize that SPLL in the selected PCA space results in
a stronger negative correlation compared to SPLL calculated
from the raw data. The following procedure was applied
50 times to each dataset.

1) Take a stratified random sample of size M as the window
with the training data, W1, and train an SVM classifier
on it.3

2) Run PCA on W1 and keep the components beyond the
K = 95% of explained variance. Denote the PCA-
transformed and clipped dataset as W1,PC A.

3) Repeat for i = 1:100.
a) Take a random sample of M instances from the

remaining data as the i.i.d. window W2. Calculate
the classification accuracy of the SVM trained on
W1, say a(i). Calculate SPLL for windows W1 and
W2 as in (28) and store the result in b(i).

b) Transform W2 in the PC space using the eigen-
vectors of the retained components. Call this set
W2,PC A. Calculate SPLL for windows W1,PC A and
W2,PC A as in (28) and store the result in c(i).

c) Apply a change (described above) to W2 to obtain
a new set called W ′

2. Calculate the classification
accuracy of the SVM trained on W1 and store in
a′(i). Calculate SPLL for windows W1 and W ′

2 as
in (28) and store the result in b′(i).

d) Transform W ′
2 in the PC space using the eigen-

vectors of the retained components. Call this set
W ′

2,PC A. Calculate SPLL for windows W1,PC A and
W ′

2,PC A as in (28) and store the result in c′(i).
4) Concatenate the accuracies and the SPLL for the cases

with and without a change, to obtain A = [a, a′],
B = [b, b′] and C = [c, c′]. Calculate and store the
correlation between A and B , and A and C . If our
hypothesis is correct, A (accuracy) and C (SPLL from
PCA-transformed data) will have a stronger negative
correlation than A and B (SPLL from raw data).

The window size M is a parameter of the algorithm; we used
M = 50. By carrying out 50 runs of this procedure for each
data set, 50 correlation coefficients are obtained.

C. Results

1) Experiment 1: Fig. 7 shows the mean difference
AUC(PCA)−AUC(raw) across the 35 datasets as a function of
the percentage of dismissed variance K . The differences are
positive if the low-variance components are retained. Using
the 35 datasets, we carried out a paired two-tailed t-test
between AUC(raw) and AUC(PCA, K ), for the six values of
K . The test was applied only for values of K for which the

2We used the support vector machine (SVM) classifier from the MATLAB

bioinformatics toolbox.
3For multiple classes, we applied SVM to all pairs of classes and labeled

the data point to the class with the most votes.
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TABLE I

RESULTS FROM THE EXPERIMENTS WITH TWO TYPES OF CHANGE

Shuffle Values Shuffle Features
Name N n c Pmax Pmin #PCA ρraw ρPCA ρraw ρPCA

Breast 277 9 2 0.708 0.292 2.28 −0.2983 −0.3451• −0.1696 −0.2841•
Contrac 1473 9 3 0.427 0.226 2.18 −0.2544 −0.3320• −0.1844 −0.2983•

Contractions 98 27 2 0.500 0.500 16.38 −0.8262 −0.8169◦ −0.6719 −0.6811•
Ecoli 336 7 8 0.426 0.006 2.94 −0.5667 −0.7546• −0.6066 −0.6161–

German 1000 24 2 0.700 0.300 8.20 −0.1395 −0.3500• −0.0918 −0.3330•
Glass 214 9 6 0.355 0.042 4.32 −0.4585 −0.6713• −0.3134 −0.5876•

Image 2310 19 7 0.143 0.143 12.58 −0.6516 −0.8294• −0.3206 −0.6878•
Intubation 302 17 2 0.500 0.500 6.00 −0.5045 −0.6702• −0.3571 −0.6016•

Ionosphere 351 34 2 0.641 0.359 21.64 −0.6755 −0.7811• −0.3253 −0.5368•
Laryngeal1 213 16 2 0.620 0.380 9.02 −0.6387 −0.6791• −0.4225 −0.5262•
Laryngeal2 692 16 2 0.923 0.077 9.02 −0.4272 −0.5304• −0.2845 −0.4525•
Laryngeal3 353 16 3 0.618 0.150 9.38 −0.5976 −0.6728• −0.3683 −0.5140•

Lenses 24 4 3 0.625 0.167 1.00 0.2319 0.2586– 0.2524 0.1843•
Letters 20000 16 26 0.041 0.037 6.22 −0.7074 −0.8155• −0.5456 −0.7715•

Liver 345 6 2 0.580 0.420 1.98 −0.3360 −0.3856• −0.1154 −0.2779•
Lymph 148 18 4 0.453 0.014 5.48 −0.2127 −0.2466• −0.0597 −0.2015•

Pendigits 10992 16 10 0.104 0.096 8.12 −0.9156 −0.9436• −0.8133 −0.8996•
Phoneme 5404 5 2 0.707 0.293 1.02 −0.3219 −0.3285– −0.1969 −0.1443◦

Pima 768 8 2 0.651 0.349 2.02 −0.3230 −0.4637• −0.0855 −0.2192•
Rds 85 17 2 0.529 0.471 6.06 −0.8013 −0.8302• −0.6035 −0.6954•

Satimage 6435 36 6 0.238 0.097 31.98 −0.9285 −0.9012◦ −0.5080 −0.6296•
Scrapie 3113 14 2 0.829 0.171 4.10 −0.0832 −0.0999– −0.0438 −0.3151•
Shuttle 58000 9 7 0.786 0.000 6.94 0.0709 −0.4929• 0.2515 −0.4491•
Sonar 208 60 2 0.534 0.466 40.42 −0.6630 −0.7119• −0.4413 −0.5570•

Soybean_large 266 35 15 0.150 0.038 17.64 −0.7492 −0.9187• −0.5760 −0.8726•
Spam 4601 57 2 0.606 0.394 37.34 −0.0492 −0.1566• −0.0074 −0.1130•

Spect_continuous 349 44 2 0.728 0.272 28.14 −0.3655 −0.4721• 0.0682 −0.2115•
Thyroid 215 5 3 0.698 0.140 1.98 −0.6682 −0.6517– −0.4921 −0.6281•
Vehicle 846 18 4 0.258 0.235 12.94 −0.7721 −0.8396• −0.4387 −0.7444•

Voice_3 238 10 3 0.706 0.076 4.20 −0.6433 −0.6895• −0.4300 −0.5481•
Voice_9 428 10 9 0.269 0.016 4.00 −0.5985 −0.6552• −0.4132 −0.5356•

Votes 232 16 2 0.534 0.466 6.06 −0.8193 −0.7874◦ −0.6825 −0.6254◦
Vowel 990 11 10 0.091 0.091 3.54 −0.7907 −0.8654• −0.6813 −0.7560•

Wbc 569 30 2 0.627 0.373 22.84 −0.7728 −0.7707– −0.1849 −0.4653•
Wine 178 13 3 0.399 0.270 4.98 −0.8970 −0.8933– −0.7403 −0.8029•

Jarque–Bera hypothesis test indicated normality of the pair-
wise differences of the AUC. For the remaining values of K ,
we used the Wilcoxon signed rank test for zero median of
the differences. The circled points correspond to statistically
significant differences. Thresholds K = 90% and K = 95%
lead to significantly better change detection than raw data.
Interestingly, using all principal components (K = 0%) leads
to significantly worse AUC compared to detection from raw
data. One possible explanation for this finding is that PCA
fools the clustering algorithm so that the (anyway rough)
approximation of the pdf as a mixture of Gaussians becomes
inadequate.

The points where the AUC for the PCA data is significantly
better than AUC with raw data are enclosed in circles. The
points where PCA loses to raw data are enclosed in grey
squares.

Fig. 8 shows a scatterplot of the 35 datasets in the space
of AUC(raw) and AUC (PCA, K = 95%) for the two
types of changes. The reference diagonal for which the PCA
extraction does not make any difference is also plotted. It

can be seen that most points are above the diagonal, demon-
strating the improved change detection capability of the PCA
features.

2) Experiment 2: Table I shows the correlation coefficients
averaged across 50 runs for each dataset. The correlation
coefficient between the classification accuracy and SPLL
calculated from the raw data is denoted by ρraw, and the
one for the features extracted through PCA by ρPCA. Using
the 50 replicas of the experiment, we carried out a paired
two-tailed t-test for the datasets for which the Jarque–Bera
hypothesis test indicated normality of the pairwise differences
of the correlation coefficients. For the remaining datasets, we
used the Wilcoxon signed rank test for zero median of the
differences. Statistically significant differences (α = 0.05) are
marked in Table I with • if PCA was better, and with ◦ if
the raw data detection was better. Shown in the table are also
the prevalences of the largest and the smallest classes in the
data (Pmax and Pmin) estimated from the whole dataset. The
column labeled “# PCA” contains the percentage of retained
principal components.
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(a) (b)

Fig. 7. Average difference AUC(PCA)−AUC(raw). (a) Change value shuffle. (b) Change feature shuffle.

(a) (b)

Fig. 8. Scatterplot of the 35 datasets in the space of AUC(raw) and AUC(PCA, K = 95%). (a) Change value shuffle. (b) Change feature shuffle.

(a) (b) (c) (d)

Fig. 9. Shuffle values. Scatterplot of the 35 datasets in the space space (ρraw, ρPCA). (a) K = 95%. (b) K = 85%. (c) K = 50%. (d) K = 0%.

Figs. 9 and 10 show scatterplots of the 35 datasets in
the space (ρraw, ρPCA) for four values of K . The differences
that were found to be statistically significant are marked with
circles if favorable to PCA and with grey squares if favorable
to the raw data.

The results demonstrate that feature extraction through
PCA leads to markedly better change detection and therefore
stronger correlation with the classification accuracy than using
the raw unlabeled data.

D. Further Analyses

We carried out further analyses to establish which
characteristics of the datasets may be related to the feature

extraction success. Fig. 11 shows a scatter plot where each
point corresponds to a dataset. The x-axis is the prior proba-
bility of the largest class and the y-axis is the prior probability
of the smallest class. The feasible space is within a triangle, as
shown in the figure. The right edge corresponds to two-class
problems, because the smallest and the largest priors sum up
to 1. The number of classes increases from this edge toward
the origin (0, 0). The left edge of the triangle corresponds to
equiprobable classes. The largest prior on this edge is equal to
the smallest prior, which means that all classes have the same
prior probabilities. This edge can be thought of as the edge of
balanced problems. The balance disappears toward the bottom
right corner. The pinnacle of the triangle corresponds to two
equiprobable classes. The size of the marker signifies the
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(a) (b) (c) (d)

Fig. 10. Shuffle features. Scatterplot of the 35 datasets in the space space (ρraw, ρPCA). (a) K = 95%. (b) K = 85%. (c) K = 50%. (d) K = 0%.

(a) (b)

Fig. 11. Scatterplot of the 35 datasets in the space of the largest and smallest prior probabilities. The size of the marker signifies the strength of the correlation
between SPLL with PCA and the classification accuracy. (a) Change value shuffle. (b) Change feature shuffle.

(a) (b)

Fig. 12. Example of three changes (plotted in black) which lead to the same optimal classification boundary as the original data (dashed line). (a) Change
Value shuffle. (b) Change Feature shuffle.

strength of the correlation between SPLL with PCA and the
classification accuracy.

The figure suggests that the PCA has a stable and consistent
behavior for multiclass fairly balanced datasets (bottom left of
the scatterplot). For a smaller number of imbalanced classes
(bottom right), the correlation ρPCA is not very strong. Our
further analyses did not find interesting relationship patterns
between the data characteristics and the correlations, except
for the pronounced dip for both correlations ρPCA and ρRaw

with respect to the number of retained principal components.
Fig. 12 shows the two correlations as functions of the

proportion of retained principal components. The fit with the
parabolas is not particularly tight but shows a tendency. For
both heuristics, change detection is most related to the clas-
sification accuracy if about half of the principal components
explain 95% of the variance; hence we retain the remaining

half. As can be expected, the PCA curve lies beneath the
curve for the raw data, demonstrating the advantage of feature
extraction for change detection. The pattern, however, is
similar for both correlation coefficients. It may be related to
the type of changes and the way we induced them, but may
also benefit from a data-related interpretation. Since we are
interested in comparing feature extraction to raw data change
detection, we relegate the further analysis of this pattern to
future studies.

V. SIMPLE VIDEO SEGMENTATION

We applied the change detection with and without PCA to
a simple video segmentation problem. A short video clip of
an office environment was produced, with small movements
of the chairs and the posture of one of the assistants in



KUNCHEVA AND FAITHFULL: CHANGE DETECTION IN MULTIDIMENSIONAL UNLABELED DATA 79

(a) (b) (c)

Fig. 13. Frames from the three parts of the video being segmented.
(a) Beginning. (b) Middle. (c) End.
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Fig. 14. SPLL criteria values for the video frames.
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Fig. 15. Difference between the two SPLL criteria.

the office. The change was introduced in the middle part of
the video by blocking the camera with the palm of a hand.
The hand was made into a fist and opened again before
removing it from view. Sample frames from the beginning,
middle, and end part of the video are shown in Fig. 13.

For the purposes of showcasing the feature extraction,
we were only interested in the admittedly easy detection
of the change in the middle. The features that formed the
online multidimensional stream were the red, green, and blue
averages of each frame. We set W1 to be the sequence of the
first 50 frames, and took a sliding window of 25 frames as W2.
The PCA was applied to W1 only. Fig. 14 plots the SPLL
value with and without PCA across the frame sequence. Both
criteria identify correctly the middle part with the change, but
the values obtained through PCA are much larger. Fig. 15
depicts the difference between SPLL with PCA and without
PCA. Again, the results favor the feature extraction approach
to change detection.

VI. CONCLUSION

The lack of a rigorous methodology for feature extraction
for the purposes of change detection in multidimensional

unlabeled data has been noted in the literature. This paper
offered a step in this direction. We argued that, after applying
PCA, the components with the smaller variance should be
kept because they are likely to be more sensitive to a general
change.

This paper was concerned only with comparing two given
windows of data. There are many more issues to be taken
into account, such as non i.i.d data, window sizes, policy
for signaling a change, establishing thresholds for the criteria
involved, etc. Many of these issues need to be explored
together with the feature extraction scenario proposed here.
For example, it is interesting to find answers to the following
questions.

1) How sensitive is PCA-based change detection to the
sizes of windows W1 and W2?

2) Is there a “middle part” of principal components which
are both relatively important and relatively sensitive to
change?

3) How will the correlation coefficients behave for different
classifier models?

4) How efficient will feature extraction be in detecting
changes for very high-dimensional data such as func-
tional magnetic resonance imaging (fMRI)? The excep-
tionally high feature redundancy in this case may require
a different approach in terms of which components are
retained.

5) How much computational complexity is added by the
feature extraction step?
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