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Abstract

Adjusted Rand index is used to measure diversity in cluster ensembles and a diversity measure is subsequently proposed.

Although the measure was found to be related to the quality of the ensemble, this relationship appeared to be non-monotonic.

In some cases, ensembles which exhibited a moderate level of diversity gave a more accurate clustering. Based on this, a procedure

for building a cluster ensemble of a chosen type is proposed (assuming that an ensemble relies on one or more random parameters):

generate a small random population of cluster ensembles, calculate the diversity of each ensemble and select the ensemble corre-

sponding to the median diversity. We demonstrate the advantages of both our measure and procedure on 5 data sets and carry

out statistical comparisons involving two diversity measures for cluster ensembles from the recent literature. An experiment with

9 data sets was also carried out to examine how the diversity-based selection procedure fares on ensembles of various sizes. For

these experiments the classification accuracy was used as the performance criterion. The results suggest that selection by median

diversity is no worse and in some cases is better than building and holding on to one ensemble.

� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Cluster ensembles emerged recently as a coherent
stream out of the multiple classifier systems area

[12,27,28,8–10,6,23,1,14,11]. They are deemed to be bet-

ter than single clustering algorithms for discovering

complex or noisy structures in the data. The strongest

argument in favour of cluster ensembles is as follows.

It is known that the current off-the-shelf clustering

methods may suggest very different structures in the

same data. This is the result of the different clustering
criteria being optimized. There is no layman guide to

choosing a clustering method for a given data set and

so an inexperienced user runs the risk of picking an

inappropriate clustering method. There is no ground
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truth against which the result can be matched, therefore

there is no critique to the user�s choice. Cluster ensem-

bles provide a more universal solution in that various
structures and shapes of clusters present in data may

be discovered by the same ensemble method, and the

solution is less dependent upon the chosen ensemble

type [27].

Let Z be a data set and let P = {P1, . . . , PL} be a set

of partitions on Z. Each partition is obtained by apply-

ing a clustering algorithm on Z or a subset of it. We as-

sume that the partitions are generated by varying a
random parameter of the clustering algorithm, for

example starting the algorithm from L random initial-

izations. The clustering algorithm (or run) which pro-

duces Pi will be called here an ‘‘ensemble member’’ or

‘‘clusterer’’. The clusterers may be versions of the same

clustering algorithm or different clustering algorithms.

For simplicity, the same notation, Pi, will be used both
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for the clusterer and for the corresponding partition.

The goal is to find a single (resultant) partition, P*,

based on the information contained in the set P.

The ‘‘accuracy’’ of a clustering algorithm (or a cluster

ensemble) is measured by the match between the parti-

tion produced and some known ground-truth partition.
A reliable ground-truth partition is seldom available, so

most experimental studies employ generated data with

pre-specified cluster structure. From the many matching

indices suggested in the literature [4,5,16,26], we chose

the adjusted Rand index [16] because of the following

properties: (1) it has a fixed value of 0 if the two com-

pared partitions are formed independently from one an-

other; (2) in our preliminary experiments, this index was
found to have a greater sensitivity to pick out good par-

titions compared to other indices.

Diversity within an ensemble is of vital importance

for its success. An ensemble of identical clusterers or

classifiers will not outperform the individual ensemble

members. However, finding a sensible quantitative mea-

sure of diversity in classifier ensembles has been notori-

ously hard [19–21]. Diversity in cluster ensembles is
considered here. A diversity measure is proposed and

its relationship with the accuracy of the ensemble is

demonstrated. Based on the results, a procedure is sug-

gested for selecting a cluster ensemble from a small pop-

ulation of ensembles. The proposed diversity measure as

well as the match index for the ensemble accuracy are

based on the Adjusted Rand Index.

The rest of the paper is organized as follows. Section
2 introduces cluster ensembles. Section 3 contains the

proposed diversity measure together with some results

on its relationship with the ensemble accuracy. At the

end of this section we list the steps of our proposed

methodology for selecting a cluster ensemble from a

small population. Section 4 offers the results from a sta-

tistical comparison of the proposed diversity measure

with two other measures due to Fern and Brodley [6]
and Greene et al. [13]. Section 5 contains an experiment

with 9 data sets looking into the relationship between

the performance of the proposed selection method and

the ensemble size. Section 6 concludes the study.
2. Cluster ensembles

There are various ways to build a cluster ensemble:

• Use different subsets of features (overlapping or dis-

joint), called feature-distributed clustering in

[13,27,28].

• Use different clustering algorithms within the ensem-

ble [15]. Such ensembles are called heterogeneous or

hybrid. Ensembles with the same clustering method
obtained by varying a random parameter will be

called homogeneous.
• Vary a random parameter of the clustering algo-

rithm. For example, run the k-means clustering

method from different initializations or generate

L random projections the data on a low-

dimensional space and run k-means for each projec-

tion [6,29].
• Use different a data set for each ensemble member,

e.g. re-sampling with or without replacement

[3,7,10,22,23], called object-distributed clustering

[27,28].

Any combination of the above construction heuristics

is also a possible construction method. Once P1, . . . , PL

are constructed, the resultant partition P* has to be
found.

The direct approach (re-labeling) seeks correspon-

dence between the cluster labels across the partitions

and fuses the clusters of the same label [7,27,28,32].

Note that the labels that we assign to the clusters in

the individual partitions are arbitrary. Thus two identi-

cal partitions might have permuted labels and be per-

ceived as different. Suppose that the correspondence
between the partitions has been solved. Then a voting

between the clusterers would be straightforward: just

count the number of votes for the respective cluster.

For c clusters, there are c! permutations of the labels

and an exhaustive experiment might not be feasible for

large c.

The feature-based approach treats the output of each

clusterer as a categorical feature. The collection of L fea-
tures can be regarded as an ‘‘intermediate feature space’’

and another clustering algorithm can be run on it. A

mixture model for this case is proposed in [30].

The hypergraph approach [27,28] organizes the L par-

titions into a hypergraph and uses methods for hyper-

graph partitioning to obtain the ensemble result.

Finally, the pairwise approach (also co-association ap-

proach) avoids the correspondence task altogether by
using a coincidence matrix between all pairs of objects.

The matrices for the partitions are then combined and

a final clustering is derived thereof.

This study is based on the pairwise approach whose

generic algorithm is detailed in Fig. 1. In the traditional

implementation of this algorithm (voting k-means [8],

evidence accumulation algorithm [9]), the following

choices are made: (i) The clusterers are various runs of
the k-means algorithm (see for details [2]). (ii) The same

number of overproduced clusters, c, is assigned to each

clusterer. (iii) The final consensus matrix, M, has an

(i, j)th entry as follows:

mij ¼
1

L

XL

k¼1

mk
i;j;

i.e., it contains the proportion out of L clusterers which
have put objects i and j in the same cluster.



Fig. 1. The generic pairwise cluster ensemble algorithm.
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The resultant partition, P*, is traditionally found in

one of two ways. In the first way, M is ‘‘cut’’ with a

pre-specified threshold, h. All entries greater than h are

set to 1 and the remaining entries are set to 0. The

new matrix is treated as the co-association matrix and

the respective partition is derived thereof (a choice of

h = 0.5 will correspond to majority voting between the

clusterers as to the joint membership of objects i and
j). In the second way, the entries of M are treated as

‘‘similarities’’ and another clustering algorithm is run

on them. The common choice is the single-link algorithm

(see [2]). In fact, cutting M at a certain threshold is

equivalent to running the single link algorithm and cut-

ting the dendrogram obtained from the hierarchical

clustering at similarity h. Viewed in this context, cluster

ensemble is a type of stacked clustering, where layers of
similarity matrices are generated and clustering algo-

rithms are subsequently applied on them. Our pilot

experiments showed slightly better results when a new

clustering procedure was applied on the consensus ma-

trix M used as data. This corresponds to a method re-

cently proposed in pattern recognition whereby

similarities are treated as new features [24,25]. If not sta-

ted otherwise, the experiments in this paper are carried
out with a single link clustering using the consensus ma-

trix, M, as the data.
3. Diversity measures for cluster ensembles

The adjusted Rand index needed for both diversity

and accuracy of the ensemble is calculated as follows
[16]. Let A and B be two partitions on a data set Z with

N objects. Let A have cA clusters and B have cB clusters.

Denote by

• Nij the number of objects in cluster i in partition A

and in cluster j in partition B.
• N.j the number of objects in cluster j in partition B.

• Ni. the number of objects in cluster i in partition A.

The adjusted Rand index is

t1 ¼
XcA

i¼1

Ni:

2

� �
; t2 ¼

XcB

i¼1

N :j

2

� �
; t3 ¼

2t1t2

NðN � 1Þ ;

arðA;BÞ ¼

PcA
i¼1

PcB
j¼1

Nij

2

� �
� t3

1
2
ðt1 þ t2Þ � t3

;

where
a
b

� �
is the binomial coefficient. If we fix the

number of clusters cA and cB, and the number of objects

in each cluster, and draw A and B randomly (generalized
hypergeometric distribution), the adjuster Rand index

ar(A, B) should be zero. Values of ar(A, B) close to zero

will indicate that by observing A, nothing can be pre-

dicted about B, and vice versa.

The accuracy of a clusterer, say Pi, is taken to be

ar(Pi, PT), where PT is the known true partition of the

data. Respectively, the accuracy of the ensemble is

calculated as ar(P*, PT). Note that �ar� is used as a mea-
sure of accuracy. In fact, Adjusted Rand Index measures

the degree of departure from the assumption that the

two compared clustering results have occurred by

chance. A value of zero of this index will mean that

the two partitions have been generated completely inde-

pendently of one another. Thus a value of zero does not

mean that there is no match between the labels! One

distinguishing feature of our study is that we do not im-
pose the correct (known) number of clusters onto the

algorithm either at the stage of building the individual

clusterers, or at the aggregation stage. Thus our cluster-

ing may end up with e.g. 2, 3, 4 or 5 clusters for a prob-

lem with 2 classes. Calculation of a classification error

will be suitable when the number of clusters is set equal

to the number of classes.

Two approaches to measuring the ensemble diversity
are considered—pairwise and non-pairwise. In the pair-

wise approach, using the adjusted Rand index, the

ensemble diversity is

DP ¼
2

LðL� 1Þ
XL�1

i¼1

XL

j¼iþ1

ð1� arðP i; P jÞÞ:

Note that �ar� gives similarity between partitions, there-

fore 1 � ar would be the pairwise diversity. Pairwise

diversity in cluster ensembles is discussed in [6]. Instead

of the adjusted Rand index, the Normalized Mutual

Information (NMI) is used. We have studied NMI in
our previous experiments but chose here �ar� for the rea-

sons stated above. In any case, the two indices have very

similar behaviour.

The non-pairwise approach can be subdivided into

two: group diversity and individual diversity.



1 Other combinations have been tried as well, e.g. ones that included

both pairwise and non-pairwise indices (Dp, and the standard deviation

of pairwise diversities). The results were similar or worse to the ones

reported here.
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The measure proposed in [13] can be branded as

‘‘group diversity’’. The mutual information of the con-

sensus matrix M is calculated by regarding each entry

in the consensus matrix as a probability distribution.

The random variable in each cell of the matrix has

two values: ‘‘Yes’’ (meaning that objects i and j belong
in the same cluster), an estimate of Pr(Yes) being mij,

and ‘‘No’’ with Pr(No) = 1 � mij. The entropy of this

distribution is

H ij ¼ �ðmijlog2ðmijÞ þ ð1�mijÞlog2ð1�mijÞÞ;
and the overall measure of diversity is the averaged en-

tropy across the consensus matrix M,

H ¼ 2

NðN � 1Þ
XN�1

i¼1

XN

j¼iþ1

H ij:

The larger the entropy, the more diverse the ensemble
is. If all clusterers gave the same partition, then M

would contain only 0s and 1s, and the entropy would

be 0. (Note that by convention 0 Æ log(0) = 0.)

For the individual diversity subgroup, the ensemble

decision is derived and each clusterer is assigned a diver-

sity value measuring its difference from the ensemble

decision. Recalling that P* denotes the resultant cluster-

ing (the ensemble decision), the individual diversity of
clusterer Pi is 1 � ar(Pi, P*). To obtain an overall mea-

sure of diversity we may simply take the average of

the L individual diversities,

Dnp�1 ¼
1

L

XL

i¼1

ð1� arðP i; P �ÞÞ:

In our previous studies [18] we found that ensembles

that exhibit a larger spread of individual diversities are
generally better than ensembles with a smaller spread.

Therefore, we choose as the second non-pairwise diver-

sity measure, Dnp�2 the standard deviation of the indi-

vidual diversities

Dnp�2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ðL� 1Þ
XL

i¼1

ð1� arðP i; P �Þ � Dnp�1Þ2
vuut :

It turned out that the spread alone was not strongly

related to the ensemble accuracy either. Therefore a

third non-pairwise diversity measure, Dnp�3, is proposed

here based on the following intuition. Since it is believed

that the ensemble decision is close to the true labeling of

the data, the accuracy of the individual clusterers may
be estimated based on how close they are to the ensem-

ble decision. Thus larger values of 1 � Dnp�1 should be

preferred. On the other hand, variability within the

ensemble can be estimated by the spread of the individ-

ual diversities. Large variability will be indicated by lar-

ger values of Dnp�2 The simplest compromise measure,

Dnp�3 can be devised as
Dnp�3 ¼ 1
2
ð1� Dnp�1 þ Dnp�2Þ:

Another compromise measure can be constructed
using the coefficient of variation 1

Dnp�4 ¼
Dnp�2

Dnp�1

:

The goal is to find a measure related to the quality of

the ensemble so that we can pick from a set of ensembles
the one that is most likely to be good. Figs. 2 and 3

show the relationship between the six diversity mea-

sures: Dp, H, Dnp�1, Dnp�2, Dnp�3 and Dnp�4 and the

ensemble accuracy, calculated through the adjusted

Rand index for two data sets used in the experiments re-

ported in the following section. Fig. 2 shows the six plots

for an artificial data set consisting of 4 Gaussian clus-

ters, called ‘‘four-gauss’’. Fig. 3 shows the plots with
the UCI wine data (http://www.ics.uci.edu/~mlearn/

MLRepository. html). Each plot contains the accuracies

of 100 ensembles against their diversity. The ensembles

in Fig. 2 were built on 100 different data sets of 4 Gauss-

ian clusters sampled from the same distribution. The 100

ensembles in Fig. 3 were built by varying the random

parameters of the ensemble (explained later in the exper-

imental section). The solid line shows the ensemble accu-
racy and the line with the dot markers shows the

averaged individual accuracy.

The behaviour of the measures except for Dnp�1 and

Dnp�3 is rather erratic. On the other hand, Dnp�1 shows

an unexpected pattern. The four-gauss data has a clear-

cut structure, however the accuracy of the ensemble is

inversely related with its diversity Dnp�1. As seen in

Fig. 2(c), more diverse ensembles are less accurate than
less diverse ensembles. We could attribute this phenom-

enon to the intuition that more diversity would be asso-

ciated with many clusterers not getting right the

clustering structure and therefore having lower individ-

ual accuracy. It is interesting to observe that the average

accuracy of the individual clusterers (dot marker) shows

no substantial increase or decrease. We can say that,

although Dnp�1 is a valid measure of diversity by design,
its behaviour with respect to accuracy is to some extent

counterintuitive.

Figs. 2 and 3 display the two typical patterns that we

found in our experiments. For the sets with a clear-cut

cluster structure, such as four-gauss, the proposed indi-

ces Dnp�3 and Dnp�4 have roughly a monotonically

increasing relationship with the ensemble accuracy.

For other data sets, an example of which is the wine
data set, there is a ‘‘cup’’ pattern, showing that moderate

values of the two indices are associated with higher

ensemble accuracy.

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
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To ease the interpretation of Figs. 2 and 3, the corre-

lation between the 6 diversity measures and the ensem-

ble accuracy has been calculated and displayed in

Table 1. Since the correlation coefficient is a measure

of linear dependency, the ‘‘cup’’ pattern in Fig. 3(c)

and (e) will not stand out.

Fig. 4 shows the two subplots (e) from Figs. 2 and 3

and a fitted polynomial curve of degree 3 (the thick line)
of the ensemble accuracy as a function of Dnp�3. The

monotonic and the cup pattern can be seen from the

interpolation. The problem is that it is not known in ad-

vance whether our data will exhibit one or the other.
The two patterns suggest that a compromise can be

sought in the medium value of the diversity. Therefore

we suggest the following simple procedure for building

cluster ensembles:

1. Generate K ensembles varying the random parame-

ter(s) of the clustering algorithm.

2. Calculate diversity using a chosen diversity measure
(we prefer Dnp�3 or Dnp�1 for reasons stated above

and the explanations later in the experimental section).

3. Find the median of the diversity values and pick the

corresponding ensemble.
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Table 1

Correlation coefficients between the 6 diversity measures and the ensemble accuracy for the examples in Figs. 2 and 3

Data set Dp H Dnp�1 Dnp�2 Dnp�3 Dnp�4 Individual average

Four-gauss �0.1313 �0.0329 �0.9263 0.2356 0.8701 0.6171 0.2245

Wine 0.4456 0.3378 �0.3796 0.4006 0.5394 0.3953 0.4095

Shown also is the correlation between the individual average and the ensemble accuracy.
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Our hypothesis is that ensembles selected through

median diversity will fare better than randomly selected

ensembles or ensembles selected through maximum

diversity.
4. Experiments

Seven types of homogeneous ensembles were con-

structed as summarized in Table 2. Two most common

types of clusterers were used: the k-means and the mean

link method (average link, average linkage). All ensem-

ble consisted of L = 25 clusterers. The parameters that

we varied were:

• the number of overproduced clusters, c. The value

was either fixed at c = 20 (ensembles 1 and 5) or cho-

sen randomly for each ensemble member in the range

from 2 to 22;

• the initialization of k-means for ensembles 1, 2, 3 and

4;

• the sample submitted for clustering to each ensemble
member. In ensemble models 1, 2 and 4, the whole

data set Z was submitted to each clusterer. In the
Table 2

Summary of the design of the 7 ensembles types

Number 1 2 3

Type of the base clusterer k-Means k-Means k-Mea

Number of overproduced clusters, c 20 Random Rando

Sample size for the base clusterer Whole Whole Rando

Noise added No No No
remaining ensembles, a random sub-sample of Z

was submitted to each clusterer with size between

N/2 and N;

• the noise injection. For building ensembles 4 and 7
we altered the data for each ensemble member by

adding a Gaussian noise with mean 0 and standard

deviation 0.1.

All ensemble types were applied to 5 data sets, sum-

marized in Table 3. For each ensemble type and each

data set, 100 ensembles were generated in order to mea-

sure diversity and its relationship with the ensemble

accuracy. For the three artificial data sets, each ensem-

ble was built on a different data set generated from the

respective distribution. Fig. 5 shows an example of three

such data sets.
All three sets were generated in 2-D (as plotted) and

then 10 more dimensions of uniform random noise were

appended to each data set. A total of 100 points were gen-

erated from each distribution. The noise is bound to

introduce diversity perhaps both helpful and harmful to

the clustering. Usually noise is being artificially injected

into data for the purpose of simulating reality, i.e. exactly

for the purpose of creating diversity. We felt that the 2-D
4 5 6 7

ns k-Means Mean link Mean link Mean link

m Random 20 Random Random

m Whole Random Random Random

Yes No No Yes



Table 3

Data sets

Name Type Number of

objects, N

Number of

features

Number of

classes

(supposed

clusters)

Four-gauss Artificial 100 12 4

Easy-doughnut Artificial 100 12 2

Difficult-

doughnut

Artificial 100 12 2

Glass Real (UCI) 214 9 6

Wine Real (UCI) 178 13 3

(a) (b) (c)

Fig. 5. Artificial data sets: (a) four-gauss; (b) easy-doughnut; (c)

difficult-doughnut.
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problems, on their own, will be too easy for a single algo-

rithm and there will be no need for an ensemble at all. For

example, a popular choice of a data set elsewhere is the 2-

spirals data. The two spirals are perfectly distinguishable

by the single linkage, so the benefit from using an ensem-

ble (and studying it) becomes unclear.

The two real data sets from UCI have often been

picked for evaluating cluster ensembles, e.g., in [17,31],
because they are relatively small, features are continu-

ous-valued and there are no missing values. Note that
Table 4

Ensemble accuracies (ar(P*, PT)) for the 7 ensemble models and the 5 data s

Data set/ensemble model 1 2 3

Four-gauss 0.8574 0.9410 0.8997

Easy-doughnut 0.8660 0.8643 0.8285

Difficult-doughnut 0.2631 0.5344 0.3906

Glass 0.1885 0.1843 0.1536

Wine 0.1892 0.2374 0.2721

The largest value for each data set is shown in boldface.

Table 5

Ensemble accuracies (ar(Pmed, PT)) for ensemble model 2 and the 5 data set

Data set/measure Dp H D

Four-gauss 0.9427 0.9485 0.

Easy-doughnut 0.8983 0.8897 0.

Difficult-doughnut 0.4769 0.4987 0.

Glass 0.1752 0.1857 0.

Wine 0.2432 0.2201 0.

The largest value for each data set is shown in boldface.
the correspondence between the known labels and the

labels obtained by clustering is not necessarily a good

measure of the quality of the clustering method because

the class labels may not correspond to natural groups in

the data. Nevertheless, experiments with real-life (la-

beled) data have been reported in most studies on clus-
tering, so here we follow this tradition.

The 6 diversity measures were calculated for the 7

ensemble types (100 ensembles of each type) for each

of the 5 data sets. Table 4 shows the 35 ensemble accu-

racies averaged across 100 realizations. The ensemble

model used for Fig. 2 was 2 and for Fig. 3, 6. These

two models were chosen for the illustration because they

had the best accuracies for the respective data sets.
To find out whether the ensemble selection method

works, the following experiment was carried out. For

each data set and for each ensemble model, out of the

100 ensembles, 15 were randomly selected and the med-

ian and the maximum diversity were found within the

selection. The corresponding ensembles were identified

and their accuracies were stored. This procedure was re-

peated 100 times for each combination of ensemble
model and data set. An example of the format of the ob-

tained results is shown in Table 5. The accuracies are the

averages over the 100 runs. Table 5 is based entirely on

ensemble 2, therefore it is interesting to compare the re-

sults there with column 2 in Table 4. The selection pro-

cedures using each of the non-pairwise measures, Dnp�1

to Dnp�4 improves on the previous values of the ensem-

ble accuracy for all data sets. Both Dp and H improve on
the ensemble accuracies for the two ‘‘easier’’ data sets,

four-gauss and easy-doughnut. However, for the other

three data sets, the selection procedure using these diver-

sity measures is not very successful.
ets, averaged across 100 realizations

4 5 6 7

0.8813 0.4604 0.7304 0.6695

0.8288 0.9460 0.7749 0.5465

0.5041 0.6514 0.3551 0.2076

0.1329 0.2516 0.1767 0.1824

0.2119 0.1179 0.3623 0.3535

s, averaged across 100 runs (samples of 15 ensembles and selection)

np�1 Dnp�2 Dnp�3 Dnp�4

9872 0.9730 0.9882 0.9877

9363 0.8937 0.9143 0.8709

7856 0.6627 0.7303 0.7719

2150 0.2113 0.2176 0.2102

2786 0.2717 0.2924 0.2505



Table 6

Statistical significance of the differences between the ‘‘competitors’’

1 2 3 4 5 6 7 8 9 10 11 12 13

1 0 0 1 2 3 2 1 18 14 35 11 12 28

2 3 0 6 2 3 2 2 19 17 35 10 12 29

3 2 0 0 2 4 2 2 18 17 35 12 12 28

4 29 26 28 0 16 5 14 29 26 35 18 16 31

5 19 15 18 1 0 4 7 21 22 35 15 14 29

6 26 22 25 2 11 0 15 29 25 35 16 16 30

7 18 15 18 4 8 6 0 22 25 35 18 16 30

8 5 5 4 3 4 4 5 0 7 35 8 10 27

9 6 4 4 2 3 2 4 9 0 34 9 10 28

10 0 0 0 0 0 0 0 0 0 0 0 0 5

11 17 15 17 11 12 11 15 20 20 33 0 13 27

12 19 19 20 12 17 13 15 21 21 30 11 0 27

13 4 1 2 1 2 1 3 2 2 22 1 5 0

Entry (i, j) in the table shows the number of comparisons (out of 35)

where competitor i has been better than competitor j.

Key:

1 Base accuracy (equivalent to randomly chosen ensemble)

2 Dp, selection by median

3 H, selection by median

4 Dnp�1, selection by median

5 Dnp�2, selection by median

6 Dnp�3, selection by median

7 Dnp�4, selection by median

8 Dp, selection by maximum

9 H, selection by maximum

10 Dnp�1, selection by maximum

11 Dnp�2, selection by maximum

12 Dnp�3, selection by maximum

13 Dnp�4, selection by maximum

1 2 3 4 5 6 7 8 9 10 11 12 13
0

50

100

150

200

250

300

D

median selection maximum selection

np -1

Dnp -3

Fig. 6. Total numbers of statistically significant differences in favour

of each method. The numbers on the x-axis correspond to these in

Table 6.
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Since displaying all the results is not feasible, statisti-

cal comparisons between the obtained accuracies were

carried out. Each of the 6 diversity measures has 2 at-

tached results, one for the median selection and one

for the maximum selection.

Following the proposed procedure, the ensemble can
be selected using any of the 6 measures and either the

median or the maximum selection strategy. To be able

to refer to these selection choices, they will be called

‘‘competitors’’. The question is which of the 12 compet-

itors will give the best ensemble. The original ensemble

accuracy (Table 4) can be considered as the base design

and added as a competitor as well. If an ensemble selec-

tion method is successful, then the obtained accuracy
will be greater than the base accuracy and the difference

will be statistically significant.

The statistical tests were carried out at level of signif-

icance 0.05. Let P ð1Þi and P ð2Þi , i = 1, . . . , 100, be the

ensemble accuracies for competitors 1 and 2, for a fixed

ensemble model and data set. The 100 differences

di ¼ P ð1Þi � P ð2Þi were formed, and the mean and the stan-

dard deviation of d were calculated. The 95% confidence
interval was constructed and checked whether it con-

tained the 0. If yes, then the obtained difference between

competitors 1 and 2 was marked as not statistically sig-

nificant. If the zero was outside the confidence interval,

to the left, then competitor 1 was said to be better than

competitor 2. If the 0 was outside, to the right, then

competitor 2 was said to be better than competitor 1.

There are 5 · 7 = 35 comparisons between each pair of
competitors. Table 6 contains the results from the statis-

tical tests. Entry (i, j) in the table shows the number of

comparisons (out of 35) where competitor i has been

better than competitor j.

Table 6 shows that Dnp�1 and Dnp�3 are the best indi-

ces. While Dnp�3 finds good ensembles for both median

values of diversity and large values of diversity, Dnp�1

fails with the maximum-selection method. This once
again confirms the counterintuitive behaviour of the in-

dex in that its values indicating large diversity corre-

spond to poor ensembles. To get an overall view on

the comparative results, we calculate two resultant val-

ues for each index, one for each selection method. We

sum up the times this index has been better than the

other indices (sum of the respective row in Table 6).

Fig. 6 depicts the resultant numbers for the 13 indices.
To evaluate the robustness of this result with respect

to the number of selected ensembles (set to 15 here), Ta-

ble 7 shows the resultant numbers for the 13 indices for

samples of sizes 5, 15 and 25.

The results in Tables 6 and 7 and Fig. 6 show that

median selection is better than the maximum selection

on all 6 indices. In other words, large diversity is not a

recipe for a good cluster ensemble. This was observed
not only for the proposed indices Dnp�1 to Dnp�4 but

also for the indices Dp and H suggested in [6,13]. From
the proposed set we favour Dnp�1 and Dnp�3. Although

Dnp�1 achieved a slightly better resultant number (total

number of favourable statistical comparisons), its

behaviour is to some extent counterintuitive. The maxi-

mum selection method with Dnp�1 shows that ensembles

with large values of the index (large diversity) are the

worst, so much so, that a random selection of an ensem-
ble would be better. On the other hand, Dnp�3 gives sta-

ble results for both selection methods, better for the

median selection. Table 7 shows that the pattern of rela-

tionship between the indices does not change across dif-

ferent sample sizes of selected ensembles.



Table 7

Total number of statistically significant differences in favour of each method for sample sizes 5, 15 and 25

Method 1 2 3 4 5 6 7 8 9 10 11 12 13

Size = 5 91 111 103 219 165 215 193 80 96 13 208 236 43

Size = 15 127 140 134 273 200 252 215 117 115 5 211 225 46

Size = 25 128 158 143 264 193 257 223 128 123 6 226 222 45

The median-selection results are highlighted in bold. Methods are numbered as in Table 6.
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5. Relationship between diversity-selection procedure and

the ensemble size

Our final set of experiments seeks to find out how the

proposed selection methods behave for various ensem-

ble sizes. The following set-up was used:

• Ensemble method 2 was employed as the one with the
best performance among the studied ensembles.

• To make the results more easily understandable, the

classification accuracy is shown as the performance

criterion. The classification accuracy is calculated as

the proportion of the correctly labeled objects. Each

cluster is labeled with the class most represented

within. This labeling guarantees the largest possible

classification accuracy. For this criterion to work,
the number of clusters must be the same as the num-

ber of true classes. Otherwise, the trivial partition

where each point is a cluster on its own will be the

most accurate partition! Therefore the target number

of clusters for the combination (consensus) function

was set to be equal to the (known) number of classes.

• The consensus function was k-means clustering using

the consensus matrix as the input data (as explained
in Section 2). Our choice was based on a small pilot

set of experiments which showed this consensus func-

tion to be superior to the one used before for the cur-

rent set-up.

• Four additional real data sets were included; a sum-

mary is given in Table 8.

• The ensemble size was varied from 5 to 100 with a

step of 5.
Table 8

Additional data sets

Name Type Number of

objects, N

Number of

features

Number of

classes

(supposed

clusters)

Iris Real (UCI) 150 4 3

Segmentation Real (UCI) 210 19 7

Soybean

(small)

Real (UCI) 47 35 4

Contractions Reala 96 34 2

a Personal communication from Dr. Fernando Vialriño, Computer

Vision Centre, Barcelona, Spain.
• Each point on the ‘‘select-and-choose’’ curves is an

average of 100 selections followed by a choice.

Figs. 7(A)–(B) display the results for the 9 data sets.

The x-axis is the ensemble size and the y-axis is the clas-

sification accuracy. The four lines shown correspond to

single k-means (no ensemble), single ensemble, ensemble

selected through median diversity and ensemble selected
through maximum diversity, both using Dnp�3.

There is nothing intriguing in Fig. 7(A). The ensem-

bles� accuracy quickly shoots to 100%, and selection is

not relevant at all. The accuracy for the four-gauss data

varies slightly but this is only within a fraction of a per-

cent. The high accuracy is due to the fact that here we

supply the correct number of clusters to the combiner

while in the experiments described in Section 4 the mod-
els were disadvantaged by having to guess the number of

clusters.

Figs. 7(B) and (C) show that selection by median is

better than selection by maximum in 3 occasions (glass,

wine and soybean data), by a clear margin in 2 of these

cases (glass and wine data). On the other hand, selection

by maximum is better than selection by median for iris,

segmentation and contractions data sets. Note that the
rate of improvement varies almost randomly with the

number of clusterers in the ensembles (segmentation

and contractions data), which suggests a certain instabil-

ity and fluctuations related to this selection method.

What is more important, selection by median is either

similar or no worse than the ensemble itself (no selec-

tion), in some cases better. On the other hand, selection

by maximum may be substantially worse than the
ensemble (glass and wine). Since in real problems, there

is no way of knowing which situation we are in, we rec-

ommend selection by median as the safer option.

Further experiments indicated that there is a great

variability of the results depending upon the choice of

the ensemble model and the consensus function. This

suggests that it is not only the characteristics of the data

set that determine which selection strategy is better.
Opposite trends of the accuracy as a function of the

ensemble size have been found as well. For the same

data set, one ensemble model will improve with increas-

ing the ensemble size while another model will

deteriorate.

Why may ensembles not work well for real data? The

results reveal several interesting phenomena. The con-
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Fig. 7. (A) Classification accuracy versus ensemble size for glass, wine

and iris data. (B) Classification accuracy versus ensemble size for glass,

wine and iris data. (C) Classification accuracy versus ensemble size for

segmentation, soybean and contractions data.
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sensus function does have a great effect on the ensemble

performance, as found by other authors. It was interest-

ing to see that sometimes the size of the ensemble is
actually inversely related to the ensemble accuracy.

Moreover, the ensemble itself seems to be less accurate

than a single k-mean clustering. The reason for this

could be that the class labels do not correspond to nat-

ural clusters in data. This scenario is not unlikely to hap-

pen. Suppose that your problem is to label pixels in an
image into classes ‘‘black’’ and ‘‘white’’. If you omit

the labeling, the data set will consist of the coordinates

of all the pixels in an image. No clustering procedure

can give any meaningful result on this data; the only rea-

sonable answer would be that there are no distinct clus-

ters. If the success is judged by the classification

accuracy, our choice of a best clustering procedure out

of a pool would be completely random. The data sets
in this study were taken from a benchmark repository

for classification. If the classes corresponded to natural

clusters in data, then classification would be easy and

the sets would not be in the benchmark suite. Therefore

the mismatches between clusters and class labels for

some data sets are not surprising.
6. Conclusions

Since diversity in classifier and cluster ensembles is a

loosely defined concept, there are many ways to specify

and measure it. Four indices are proposed here for esti-

mating diversity in cluster ensembles. They are based on

an observation in our previous studies [18] that only an

averaged disagreement measure is insufficient. The re-
sults in this study support selecting the ensemble with

medium diversity from a randomly generated set of

ensembles. Two averaged measures of disagreement

for cluster ensembles were discussed in the recent litera-

ture, Dp in [6] and H in [13]. The difference between these

measures and the ones proposed here is that the pro-

posed measures take the ensemble decision as the point

of reference and calculate diversity using the averaged
deviation from this decision. In the experiments carried

out the proposed measures compared favourably to Dp

and H.

It was observed that Dnp�1 shows a counterintuitive

behaviour in that large diversity leads to very poor

ensembles. Based on our previous observations, the

spread of the diversities was included in the measure.

From the three such measures proposed here, Dnp�2

Dnp�3 and Dnp�4 the results favoured Dnp�3 as the one

most related to the ensemble accuracy. Two typical pat-

terns of diversity–accuracy relationship were found as

shown in Fig. 4. One is almost monotonic—the larger

the measure value, the higher the accuracy, while the

other is shaped as a parabola with a maximum at about

the middle of the diversity range. This led us to the idea

of selecting from a set of randomly generated ensembles
the one with the median diversity. The results show that
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ensembles selected through Dnp�1 or Dnp�3 in this way

usually are significantly better than a randomly chosen

ensemble or ensembles chosen using Dp or H (either

by median or maximum diversity).

If there was a further indication about which of the

two relationship patterns is applicable to a given data
set or ensemble model, the median-selection strategy

could be applied for the parabola pattern and maxi-

mum-selection strategy for the monotonic pattern, using

Dnp�3 in both cases.

It should be noted that patterns of diversity–accuracy

relationship tend to vary from one data set to another

(Section 5), and also from one ensemble construction

model to another (Section 4). These patterns also vary
with respect to the combination method (consensus

function), which is not shown in this study but was

found in the course of our experiments. Thus we are

cautious to generalize from this experiment because of

the observed variability. It is important to concentrate

effort in the future in finding which combinations of de-

sign heuristics, consensus functions and ensemble sizes

are appropriate for which types of data.
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