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E-mail: sanchez@uji.es

2- School of Electronics and Computer Science, University of Wales
Bangor, Gwynedd, LL57 1UT, United Kingdom

E-mail: l.i.kuncheva@bangor.ac.uk

Abstract. We propose a data reduction approach for finding a reference
set for the nearest neighbour classifier. The approach is based on classifier
ensembles. Each ensemble member is given a subset of the training data.
Using Wilson’s editing method, the ensemble member produces a reduced
reference set. We explored several routes to make use of these reference
sets. The results with 10 real data sets indicated that merging the reference
sets and subsequent editing of the merged set provides the best trade-off
between the error and the size of the resultant reference set. This approach
can also handle large data sets because only small fractions of the data are
edited at a time.

1 Introduction

One of the most widely studied non-parametric classification approaches is the
k-Nearest Neighbour approach (k-NN). Given a set of N previously labelled
instances (training set, TS) in a d-dimensional feature space, the k-NN classifier
assigns an input sample to the class most frequently represented among the k

closest instances in the TS, according to a certain similarity measure. A special
case of this rule is when k = 1 where an input sample is assigned to the class
of its closest neighbour. The set of instances used for k-NN is also termed the
reference set.

Various works have been devoted to reducing the computational burden of
k-NN. The challenges posed by modern practices of automatic data collection
demand new efficient approaches to data reduction. One of the problems is that
the data cannot be loaded in full into the computer memory. Inspired by this
challenge, in this paper we propose a new data reduction approach based on
classifier ensembles.

2 Data reduction techniques

Editing (or filtering) approaches [4, 7, 8, 11–13] eliminate mislabelled instances
from the original TS and “clean” possible overlapping between regions from
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different classes. Wilson [12] introduced the first baseline editing algorithm.
It consists of two steps. First a leave-one-out k-NN is applied to TS to label
each instance. Second, the mislabelled instances and removed from TS and the
remaining instances are the new reference set. The result from this algorithm
amounts to smoothing the decision boundaries between the classes.

Condensing techniques [1, 3, 6, 9, 10] aim at selecting a the smallest possible
subset of training instances without a significant degradation of classification
accuracy. Other terms, such as pruning or thinning, have also been used for this
group. Hart’s algorithm [6] is the earliest attempt at minimizing the number
of stored instances by retaining only a consistent subset of the original TS. A
subset S ⊂ T is said to be consistent iff all of T is correctly classified using 1-NN
with S as the reference set. Although there are many consistent subsets, we are
interested in the one with the minimum cardinality, called the minimal consistent
subset. Hart’s algorithm does not guarantee finding a minimal consistent subset
of TS.

As the two approaches target different disadvantages of 1-NN, Wilson’s and
Hart’s methods are perceived as complementary and often applied in succession.
First Wilson’s method is applied to “clean” the data, and the Hart’s method
eliminates the objects which are not important for preserving the (smoothed)
boundary.

3 Data reduction using classifier ensembles

We introduce a general methodology for data reduction which avoids the need
that all data be stored in the computer memory at the same time. The basic
scheme can be summarized as follows. First, the original training data are
split randomly into h disjoint subsets (or bags) T1, T2, . . . , Th. The size of each
subset can be chosen to be a percentage of the original TS size. The chosen data
reduction algorithm is applied to each bag Tj (j = 1, 2, . . . , h), thus obtaining h

reduced subsets, R1, R2, . . . , Rh.
From this stage onwards, different strategies for reassembling a final refer-

ence set could be applied.

• Edited Ensemble (Voting) Once the reference sets are available, an ensemble
of h classifiers can be constructed. The classifier corresponding to reference set
Rj (j = 1, . . . , h) gets as input a feature vector x ∈ <d, and assigns it to one of
the problem classes using k-NN. The final decision is made by simple majority
voting between the h assigned labels. The reduction in size can be measured by
the fraction of selected instances, which we will call storage rate. The smaller

the value, the better. Thus the storage rate of Voting is
∑h

j=1
|Rj |

|TS| , where | · |

denotes cardinality.

• Merged Reference Set (Merging) We can merge the h subsets in order to
obtain a final reduced set, say M =

⋃

Rj , (j = 1, 2, . . . , h). As different bags of
instances are selected from TS, Rj are disjoint subsets and the storage rate is



equivalent to that of the Voting method.

• Edited Merged Set (Merging+Editing) The merged set M may contain similar
instances selected by several ensemble members. Instead of keeping them all we
propose to run a further round of editing on M using the classical editing meth-
ods. This will improve on the storage rate without much degradation of accuracy.

It has been argued that ensembles of k-NN are not efficient unless different
features are used by each ensemble member. Our pilot experiments also showed
that Voting was inferior to the two merging methods. Therefore we included in
the experiments only Merging, and Merging+Editing.

We propose that the ensemble-based strategies provide a reasonable compro-
mise between accuracy and storage rate compared to classical data reduction
methods. The major benefit is that, within the ensemble approach, only a small
fraction of the data set is being edited at a time.

4 Experiments and discussion

Nine methods were examined in the experiment

Standard Ensemble

• Standard 1-NN (no data reduction) • Merging (M)
• Random search (RND)∗ • Merging+Wilson (MW)
• Wilson (W) • Merging+Wilson+Hart (MWH)
• Hart (H) • Merging+Hart (MH)
• Wilson followed by Hart (WH)

∗2% of the data was randomly chosen and evaluated as the candidate-reference set. The

best candidate out of 100 trials was returned as the selected reference set.

All the experiments were carried out on 10 data sets (Table 1) taken from
the UCI Machine Learning Database Repository (http://www.ics.uci.edu/
~mlearn) and the ELENA European Project (http://www.dice.ucl.ac.be/
neural-nets/Research/Projects/ELENA/). A 10-fold cross-validation was ap-
plied for all data sets with stratified sampling for the folds. The folds were kept
the same for all methods. None of the datasets was normalised which accounts
for some discrepancies with the error rates reported elsewhere. Each ensemble
member uses Wilson’s method to select the reference set Ri from the presented
training set Ti.

Table 2 shows the error rates achieved with the selected reference sets and
Table 3 shows the respective storage rates.

To visualize the performance of a data reduction algorithm we can use a
scatterplot of the storage rate S versus the error rate E of k-NN with the se-
lected reference set. Points close to the origin (0% storage, 0% error) signify
good reduction methods compared to points further up the diagonal line from
(0,0) to (1,1). A Pareto-optimal subset of methods can be constructed. This



Table 1: A brief summary of the experimental datasets

c d N c d N

Cancer 2 9 699 Heart 2 13 270
Diabetes 2 8 768 Phoneme 2 5 5404
Gauss 2 2 5000 Sonar 2 60 208
German 2 24 1000 Vehicle 4 18 846
Glass 6 9 214 Wine 3 13 178

c: number of classes; d: number of features; N : number of data points

Table 2: Error rates of the data reduction methods
Standard Ensemble

Datset 1-NN RND W WH H M MW MWH MH
Cancer 4.98 4.08 3.49 3.93 6.87 3.93 3.49 5.09 4.80
Diabetes 31.88 28.79 28.39 28.52 35.40 29.31 27.35 27.75 28.92
Gauss 35.18 34.04 30.62 31.26 36.08 29.54 27.76 28.28 30.64
German 33.50 33.30 30.60 30.90 37.50 29.20 29.80 30.50 30.70
Glass 26.72 51.65 36.90 34.63 27.58 38.78 37.85 37.87 38.44
Heart 44.07 36.67 34.44 35.93 45.56 34.07 32.59 32.59 34.07
Phoneme 9.25 22.45 11.31 12.49 11.51 12.34 13.84 14.82 13.03
Sonar 16.75 45.76 20.70 22.60 17.60 23.05 37.25 38.79 24.59
Vehicle 34.77 50.12 38.86 40.23 36.45 39.42 42.23 43.34 39.67
Wine 23.85 35.67 27.89 29.32 27.45 28.77 27.27 27.76 28.91

set contains non-dominated data reduction methods. Method i is called non-
dominated iff there is no other method j such that Sj ≤ Si, Ej ≤ Ei, and one of
these two inequalities is a strict inequality. Scaling the axes of the scatterplot
may account for different importance of the size reduction and error components
of the performance. However, the Pareto optimal set will remain unchanged for
any such scaling.

Since the error rates are very different for the different datasets, using the
average error across the data sets will be inadequate. Instead we calculate
ranks for the methods. For each data set the best method receives rank 1,
and the worst receives rank 9. As there are two criteria - error rate and storage
rate - each method will receive two ranks. Let re(i, j) and rs(i, j) be the er-
ror and the storage ranks for method i, respectively evaluated on dataset j.
Figure 1 displays the 9 methods in the space spanned by the average rank

on storage rate
(

r̄s(i) =
1
10

∑

j rs(i, j)
)

and the average rank on error rate
(

r̄e(i) =
1
10

∑

j re(i, j)
)

.

In order to evaluate the relative quality of the reduction methods with respect
to one another we calculated the “distance from the origin” in terms of the ranks

D(i) =
1

10

10
∑

j=1

√

re(i, j)2 + rs(i, j)2



Table 3: Storage rates of the data reduction methods
Standard Ensemble

Datset 1-NN RND W WH H M MW MWH MH
Cancer 100.00 1.95 96.63 3.18 10.54 96.16 95.33 2.04 4.06
Diabetes 100.00 1.88 69.41 10.78 52.62 64.99 57.58 4.11 15.75
Gauss 100.00 2.00 67.58 9.87 53.38 66.26 58.66 2.94 16.95
German 100.00 2.00 68.49 13.32 54.83 66.30 59.26 5.20 17.42
Glass 100.00 3.11 65.34 12.95 45.91 39.64 38.08 4.87 7.82
Heart 100.00 1.65 64.53 15.02 59.42 57.78 46.75 5.76 20.78
Phoneme 100.00 1.99 89.15 9.34 23.52 81.23 77.21 4.83 10.32
Sonar 100.00 1.60 81.44 16.90 34.28 56.79 42.35 7.75 21.23
Vehicle 100.00 1.97 62.94 15.26 52.95 47.01 38.32 4.74 14.97
Wine 100.00 1.88 70.13 9.38 40.94 60.19 53.94 3.19 10.56

The results were as follows:

D(1-NN) = 10.4845 D(RND) = 7.6688 D(W) = 8.7718
D(WH) = 6.1320 D(H) = 8.4192 D(M) = 8.2454

D(MW) = 7.0332 D(MWH) = 5.5544 D(MH) = 6.8475

The method closest to the origin was found to be MWH followed by MH. This
demonstrates the advantages of ensemble-editing to standard data reduction
methods. The Pareto optimal set of methods is indicated in Figure 1 by a
dashed line. The set consists of RND, MWH, MH and W. While RND and W
are at the two ends of the set where one of the two criteria is quite predominant,
MWH and MH are in the middle offering a valuable trade-off.

5 Concluding remarks

We propose to use a classifier ensemble approach to select a reference set for the
1-NN classifier. The experiments indicated that the best trade-off between size
and error is achieved using merging of the individual reference sets constructed
by the ensemble members followed by editing of the merged set. There are
two hyper parameters of the ensemble approach - the ensemble size and the
proportion of the data used for each ensemble member. The ensemble size was
fixed in our study to 25 [???]. The whole data set was used to form the training
sets Ti, which means that each ensemble member was presented with 4% of the
data set. It is interesting to investigate how the hyper parameters affect the
quality of the ensemble approach for data reduction. The ensemble approach
also addresses the challenge of handling large data sets whose processing in a
batch mode may be a problem.

References

[1] J.R. Cano, F. Herrera, M. Lozano, Using evolutionary algorithms as instance selection for
data reduction in KDD: An experimental study. IEEE Trans. on Evolutionary Computation
7 (2003) 561–575.



r̄e

1 2 3 4 5 6 7 8 9
3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

1−NN

RND

W

WH

H

M

MW

MWH

MH

r̄s
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