2024
Hennessey, Samuel L., Francis J. Williams, and Ludmila I. Kuncheva,
Hierarchical Vs Centroid-Based Constraint Clustering for Animal Video Data, Proc. of the
12th IEEE International Conference on Intelligent Systems (IS), 2024, Varna, Bulgaria,
pdf
(online)
[bib]
*** Winner of the Best Paper Award
Williams Francis J., Samuel L. Hennessey, Ludmila I. Kuncheva, Jose F. Diez-Pastor, and Juan J. Rodríguez,
A Constrained Cluster Ensemble Using Hierarchical Clustering Methods, Proc. of the
12th IEEE International Conference on Intelligent Systems (IS), 2024, Varna, Bulgaria,
pdf
(online)
[bib]
Kuncheva L.I., José Luis Garrido-Labrador, Ismael Ramos-Pérez,
Samuel L. Hennessey, Juan J. Rodríguez,
Semi-Supervised Classification With Pairwise Constraints: A Case
Study on Animal Identification from Video,
Information Fusion, 104, 2024, 102188,
(preprint)
(online)
[bib]
2023
Williams F. J., L. I. Kuncheva,
Effects of hyper-parameters in online constrained clustering: A study on animal videos,
Proc. of the 4th Symposium on Pattern Recognition and Applications (SPRA), 2023, Naples, Italy,
pdf
[bib]
Kuncheva L.I., José Luis Garrido-Labrador, Ismael Ramos-Pérez,
Samuel L. Hennessey, Juan J. Rodríguez,
An experiment on animal re-identification from video,
Ecological Informatics, 74, 2023, 101994,
(preprint)
pdf
[bib]
2022
Kuncheva L. I., F. J. Williams, and S. L. Hennessey,
A bibliographic view on constrained clustering,
arXiv:2209.11125, 2022,
pdf
[bib]
Kuncheva L. I., F. J. Williams, S. L. Hennessey, and J. J. Rodriguez,
A benchmark database for animal re-identification and tracking,
Proc. of the Fifth IEEE International Conference on Image Processing,
Applications and Systems (IPAS), 2022,
pdf
[bib]
Williams F. J., L. I. Kuncheva, S. L. Hennessey, and J. J. Rodriguez,
Combination of object tracking and object detection for animal recognition,
Proc. of the Fifth IEEE International Conference on Image Processing,
Applications and Systems (IPAS), 2022,
pdf
[bib]
2021
Kuncheva L. I.,
Animal Reidentification using Restricted Set Classification,
Ecological Informatics, 62, 2021, 101225,
(preprint)
pdf,
[bib]
2020
Kavur, A. E., L. I. Kuncheva and M. A. Selver,
Basic ensembles of vanilla-style deep learning models improve liver
segmentation from CT images, arXiv:2001.09647 [eess.IV], 2020,
pdf,
[bib]
Rodríguez J. J., M. Juez-Gil, A. Arnaiz-González and L. I. Kuncheva,
An experimental evaluation of Mixup Regression Forests,
Expert Systems with Applications, 151, 2020, 113376,
(preprint),
pdf,
[bib]
Rodríguez J. J., J. F. Díez-Pastor, A. Arnaiz-González and L. I. Kuncheva,
Random Balance ensembles for multiclass imbalance learning,
Knowledge-Based Systems, 193, 2020, 105434,
(preprint),
pdf,
[bib]
Kuncheva L. I., C. E. Matthews, A. Arnaiz-González and J. J. Rodríguez,
Feature Selection from High-Dimensional Data with Very Low Sample Size: A Cautionary Tale, 2020,
arXiv, 2020,
2008.12025,
pdf ,
[bib]
Kuncheva L. I., Prototype Classifiers and the Big Fish. The Case of Prototype (Instance) Selection,
IEEE SMC Magazine, 6(2), 2020, 49-56.
pdf
[bib]
Kuncheva, L. I. and C. C. Gray, A MATLAB Exercise Book, Lulu, 2020, 2nd edition.
pdf
[bib]
2019
Jones, B. D., L. Hardy, G. P. Lawrence, L. I. Kuncheva, R. Brandon, P. Such, and M. Bobat,
The Identification of 'Game Changers' in England Cricket's Developmental Pathway for 3
Elite Spin Bowling: A Machine Learning Approach, Journal of Expertise, 2(2), 2019, 92-120.
pdf
[bib]
[url]
Güllich A., L. Hardy, L. Kuncheva, S. Laing, M. Barlow, L. Evans, T. Rees, B. Abernethy,
J. Côté, C Warr, and L. Wraith, Developmental Biographies of Olympic Super-Elite and
Elite Athletes: A Multidisciplinary Pattern Recognition Analysis, Journal of Expertise,
2(1), 2019, 23-46.
pdf
[bib]
[url]
Gunn, I. A. D. and L. I. Kuncheva,
Bounds for the VC dimension of 1NN prototype sets,
arXiv:1902.02660,
pdf
[bib]
Kuncheva L. I., A. Arnaiz-Gonzalez, J. F. Diez-Pastor, and I. A. D. Gunn,
Instance selection improves geometric mean accuracy: A study on imbalanced data
classification, Progress in Artificial Intelligence, 8(2), 2019, 215-228.
arXiv:1804.07155,
pdf
[bib]
Matthews, C. E., L. I. Kuncheva and P. Yousefi, Classification and comparison of on-line video
summarisation methods, Machine Vision and Applications, 2019, doi 10.1007/s00138-019-01007-x,
pdf
[bib]
[url]
Faithfull, W. J., J. J. Rodriguez-Diez and L. I. Kuncheva, Combining univariate approaches for
ensemble change detection in multivariate data, Information Fusion, 45, 2019, 202–214.
pdf
[bib]
Kuncheva, L. I., Pattern Recognition and Neural Networks, Lulu, 2019.
pdf
[bib]
2018
Kuncheva, L. I. and J. H. V. Constance,
Restricted Set Classification with prior probabilities: A case study on chessboard recognition,
Pattern Recognition Letters, 111,
2018, 36-42.
pdf
[bib]
(data and images)
Kuncheva, L. I. and J. J. Rodriguez-Diez,
On feature selection protocols for very low-sample-size data, Pattern Recognition,
81, 2018, 660-673. https://doi.org/10.1016/j.patcog.2018.03.012,
pdf
[bib]
Kuncheva, L. I., P. Yousefi and J. Almeida, Edited nearest neighbour for selecting
keyframe summaries of egocentric videos, Journal of Visual Communication and Image Representation
52, 2018, 118–130.
pdf
[bib]
(code MATLAB)
Gunn, I. A. D., A. Arnaiz-Gonzalez and L. I. Kuncheva, A taxonomic look at instance-based stream
classifiers, Neurocomputing, 286, 2018, 167–178.
pdf
[bib]
Zubek J. and L. I. Kuncheva, Learning from exemplars and prototypes in machine
learning and psychology, arXiv:1806.01130, 2018.
pdf
[bib]
Yousefi P., C. E. Matthews and L. I. Kuncheva,
Budget-constrained online video summarisation of egocentric video using control charts,
Proceedings of the International Symposium on Visual Computing (ISVC 2018),
Las Vegas, USA, 2018.
pdf
[bib]
Yousefi P., L. I. Kuncheva and C. E. Matthews,
Selecting feature representation for online summarisation of egocentric videos,
Proceedings of the International Conference
on Computer Graphics and Visual Computing (EUROGRAPHICS 2018),
Swansea, UK, 2018.
pdf
(extended version)
[bib]
Yousefi P. and L. I. Kuncheva,
Selective keyframe summarisation for egocentric videos based on
semantic concept search,
Proceedings of the International Image Processing Applications and
Systems Conference (IPAS 2018),
Sophia Antipolis, France, 2018.
pdf
[bib]
Matthews C. E., P. Yousefi and L. I. Kuncheva,
Using control charts for online video summarisation,
Proceedings of the International Joint Conference on Computer
Vision and Pattern Recognition (CCVPR 2018),
Wellington, New Zealand, 2018.
pdf
[bib]
[url]
2017
Kuncheva L. I., P. Yousefi and J. Almeida, Comparing keyframe summaries of egocentric
videos: Closest-to-centroid baseline, Proceedings of The Seventh International Conference
on Image Processing Theory, Tools and Applications (IPTA 2017), 2017, Montreal, Canada.
pdf
[bib]
Kuncheva L. I., J. J. Rodríguez and A. S. Jackson, Restricted Set Classification:
Who is there?, Pattern Recognition, 63, 2017, 158–170.
pdf
[bib]
[code GitHub]
Kuncheva L. I., P. Yousefi and I. A. D. Gunn, On the evaluation of video keyframe summaries using user ground truth,
arXiv:1712.06899, 2017.
pdf
[bib]
(code MATLAB)
Gunn I. A. D., L. I. Kuncheva, and P. Yousefi, Bipartite graph matching for keyframe summary evaluation,
arXiv:1712.06914, 2017.
pdf
[bib]
(code MATLAB)
2016
Kuncheva L. I., I. A. D. Gunn, A concept-drift perspective on prototype selection
and generation, Proceedings of the International Joint Conference on Neural Networks
(IJCNN 2016), Vancouver, Canada, 2016, 16-23.
pdf
[bib]
2015
Diez-Pastor J. F., J. J. Rodríguez, C. García-Osorio and L. I. Kuncheva,
Diversity techniques improve the performance of the best imbalance learning ensembles,
Information Sciences, 325, 2015, 98-117.
pdf
[bib]
Kuncheva L.I. and M. Galar. Theoretical and empirical criteria for the edited nearest neighbour classifier,
Proceedings of the 15th IEEE International Conference on Data Mining, Atlantic City, 2015, 817-822.
pdf
[bib]
[code and data]
Diez-Pastor J. F., J. J. Rodríguez, C. García-Osorio and L. I. Kuncheva, Random balance: Ensembles
of variable priors classifiers for imbalanced data, Knowledge-Based Systems, 85, 2015, 96–111.
(DOI http://dx.doi.org/10.1016/j.knosys.2015.04.022).
pdf
[bib]
2014
Kuncheva L.I. Combining Pattern Classifiers. Methods and Algorithms, Wiley, 2nd edition, 2014.
pdf
[bib]
[code GitHub]
Christy T. and L.I. Kuncheva, Technological advancements in affective gaming:
A historical survey, International Journal on Computing,
3(4), 2014, 32-41.
pdf
[bib]
Kuncheva L.I. and A.S. Jackson, Who is missing? A new pattern recognition puzzle,
S+SSPR, 2014, Joensuu, Finland, Springer, LNCS 8621 243–252.
pdf
[bib]
Faithfull W.J. and L.I. Kuncheva, On optimum thresholding of multivariate
change detectors, S+SSPR, 2014, Joensuu, Finland Springer, LNCS 8621 364–373.
pdf
[bib]
Kuncheva L.I., D. Martinez-Rego, Kenneth S. L. Yuen, D. E. J.
Linden, S. J. Johnston, A spatial discrepancy measure between
voxel sets in brain imaging, Signal, Image and Video Processing,
8 (5), 2014, 913-922 (DOI: 10.1007/s11760-012-0326-0).
pdf
[bib]
Kuncheva L. I. and J. J. Rodriguez, A weighted voting framework for
classifiers ensembles, Knowledge and Information Systems 38, 2014,
259-275 (DOI: 10.1007/s10115-012-0586-6).
pdf
[bib]
Kuncheva L.I. and W.J. Faithfull, PCA feature extraction for change
detection in multidimensional unlabelled data, IEEE Transactions on
Neural Networks and Learning Systems, 25(1), 2014, 69-80 (DOI:
10.1109/TNNLS.2013.2248094).
pdf
[bib]
Marín J., D. Vázquez, A. M. López, J. Amores and L. I. Kuncheva,
Occlusion handling via random subspace classifiers for human detection,
IEEE Transactions on Systems, Man, and Cybernetics (Part B), 2014, 44(3),
342-354 (DOI: 10.1109/TCYB.2013.2255271)
pdf
[bib]
Kuncheva L.I. and C.J. Whitaker, Pattern recognition and classification, Wiley
StatsRef-Statistics Reference Online, 2014.
pdf
[bib]
2013
Kuncheva L.I., Change detection in streaming multivariate
data using likelihood detectors, IEEE Transactions on
Knowledge and Data Engineering, 2013, 25(5), 1175-1180
(DOI: 10.1109/TKDE.2011.226).
pdf
[bib]
[code (GitHub)]
Kuncheva L.I., A bound on kappa-error diagrams for analysis
of classifier ensembles, IEEE Transactions on Knowledge and
Data Engineering, 2013, 25 (3), 494-501
(DOI: 10.1109/TKDE.2011.234).
pdf
[bib]
Christy T. and L.I. Kuncheva, A.M.B.E.R. Shark Fin: An
unobtrusive affective mouse, Proc ACHI2013: The 6th
International Conference in Computer-Human Interactions, Nice,
France, 2013 , 488-495.
pdf
[bib]
Kuncheva L. I. and J. J. Rodriguez, Interval feature extraction
for classification of event-related potentials (ERP) in EEG data
analysis, Progress in Artificial Intelligence, 2(1), 2013, 65-72 (DOI:
10.1007/s13748-012-0037-3).
pdf
[bib]
2012
Kuncheva L. I., J. J. Rodriguez, Y. I. Syed, C. O. Phillips
and K. E. Lewis, Classifier ensemble methods for diagnosing
COPD from volatile organic compounds in exhaled air,
International Journal of Knowledge Discovery in Bioinformatics 3
(2), 2012, 1-15.
pdf
[bib]
Plumpton C. O., L. I. Kuncheva, N. N. Oosterhof and S. J. Johnston,
Naive random subspace ensemble with linear classifiers for real-time
classification of fMRI data, Pattern Recognition, 45 (6), 2012,
2101-2108.
pdf
[bib]
Kuncheva, L. I. and W. J. Faithfull, PCA feature extraction for
change detection in multidimensional unlabelled streaming data,
Proc. 21st International Conference on Pattern Recognition (ICPR 2012),
2012, 1140-1143.
pdf
[bib]
Kuncheva, L.I., C. J. Smith, C, S. Yasir, C. Phillips and K. E.Lewis,
Evaluation of feature ranking ensembles for high-dimensional
biomedical data: A case study, In Proceedings of the Workshop on
Biological Data Mining and its Applications in Healthcare (BioDM),
IEEE 12th International Conference on Data Mining,
2012, 49-56.
pdf
[bib]
Christy, T. and L. I. Kuncheva and K. W. Williams, Selection
of physiological input modalities for emotion recognition,
Technical Report #CS-TR-002-2012,
School of Computer Science, Bangor University, UK, 2012.
pdf
[bib]
2011
Kuncheva L.I., T. Christy, I. Pierce and S. P. Mansoor.
Multi-modal Biometric Emotion Recognition using Classifier Ensembles,
Proc 24th International Conference on Industrial, Engineering &
Other Applications of Applied Intelligent Systems (IEA-AEI), NY,
Lecture Notes in Computer Science, 2011, LNCS 6703, 317-326.
pdf
[bib]
2010
Kuncheva L.I., Full-Class Set Classification Using the Hungarian Algorithm,
International Journal of Machine Learning and Cybernetics, 1 (1),
2010, 53-61.
pdf
[bib]
[code GitHub]
Polikar R., J. DePasquale, H. S. Mohammed, G. Brown, L.I. Kuncheva,
LEARN++.MF: A Random Subspace Approach for the Missing Feature Problem,
Pattern Recognition, 43, 2010, 3817-3832.
pdf
[bib]
Kuncheva L.I., J. J. Rodriguez, Classifier Ensembles for fMRI
Data Analysis: An Experiment, Magnetic Resonance Imaging, 28
(4), 2010, 583-593.
pdf
[bib]
Plumpton C. O., L. I. Kuncheva, D. E. J. Linden and S. J. Johnston,
On-line fMRI Data Classification Using Linear and Ensemble Classifiers,
Proc. ICPR 2010, Istanbul, Turkey, 2010, 4312-4315.
pdf
[bib]
Kuncheva L.I., J. J. Rodriguez, C. O. Plumpton, D. E. J. Linden
and S. J. Johnston, Random Subspace Ensembles for fMRI Classification,
IEEE Transactions on Medical Imaging, 29 (2), 2010, 531-542.
pdf
[bib]
Kuncheva L.I. and C. O. Plumpton, Choosing parameters for
Random Subspace ensembles for fMRI classification,
Proc. Multiple Classifier Systems (MCS'10), Cairo, Egypt,
LNCS 5997, 2010, 54-63.
pdf
[bib]
Brown G., L.I. Kuncheva, "Good" and "bad" diversity
in majority vote ensembles, Proc. Multiple Classifier Systems (MCS'10),
Cairo, Egypt, LNCS 5997, 2010, 124-133.
pdf
[bib]
Dainotti A., F. Gargiulo, L.I. Kuncheva, A. Pescape and C. Sansone,
Identification of traffic flows hiding behind TCP port 80,
Proc. IEEE International Conference on Communications (ICC 2010),
2010, Cape Town, South Africa.
pdf
[bib]
Zliobaite I. and L.I. Kuncheva, Theoretical window size for classification
in the presence of sudden concept drift, Technical Report # BCS-TR-001-2010,
Bangor University, UK, 2010.
pdf
[bib]
2009
Zliobaite I. and L. I. Kuncheva, Determining the Training Window for
Small Sample Size Classification with Concept Drift,
Proc. 1st International Workshop on Transfer Mining (TM'09),
In conjunction with the 2009 IEEE International Conference on Data Mining (ICDM 2009),
Dec 6-9, 2009, Miami, Florida, USA.
pdf
[bib]
Gargiulo F., L. I. Kuncheva and C. Sansone. Network Protocol Verification by a
Classifier Selection Ensemble, Proc. MCS 2009, Reykjavik, Iceland,
Lecture Notes in Computer Science Volume 5519, 314-323.
pdf
[bib]
Kuncheva L.I. and I. Zliobaite, On the Window Size for Classification in
Changing Environments, Intelligent Data Analysis, 13 (6), 2009, 861-872.
pdf,
some simulation code (Fig 4.)
[bib]
Charles J.J., L.I. Kuncheva, B. Wells and I.S. Lim,
Stability of kerogen classification with regard to image segmentation,
Mathematical Geology, 41, 2009, 475-486.
pdf
[bib]
Kuncheva L.I., Using Control Charts for Detecting Concept Change in
Streaming Data, Technical Report, BCS-TR-001-2009,
School of Computer Science, Bangor University, UK, 2009.
pdf
[bib]
2008
Kuncheva L.I. Classifier Ensembles: Facts, Fiction, Faults and Future,
19th International Conference on Pattern Recognition (ICPR),
Tampa, Florida, 2008, (plenary talk, not reviewed).
slides (ppt)
[bib]
Kuncheva L.I. and C.O. Plumpton, Adaptive learning rate for online
linear discriminant classifiers, Proc Joint IAPR International
Workshops on Structural and Syntactic Pattern Recognition and Statistical
Techniques in Pattern Recognition S+SSPR, Orlando, Florida, USA , 2008, 510-519.
pdf
[bib]
Rodriguez J.J and L.I. Kuncheva, Combining online classification approaches
for changing environments, Proc Joint IAPR International Workshops on
Structural and Syntactic Pattern Recognition and Statistical Techniques in
Pattern Recognition S+SSPR, Orlando, Florida, USA , 2008, 520-529.
pdf
[bib]
Kuncheva L.I. and J. S. Sanchez, Nearest neighbour classifiers for
streaming data with delayed labelling, Proc. IEEE International Conference
on Data Mining (ICDM08), Pisa, Italy, 2008, 869-874.
pdf
[bib]
Kuncheva L.I. Classifier ensembles for detecting concept change in
streaming data: Overview and perspectives, Proc. 2nd Workshop SUEMA 2008 (ECAI 2008), Patras,
Greece, 2008, 5-10.
pdf
Kuncheva L.I., C.J. Whitaker and A. Narasimhamurthy, A case study on naive labelling for
the nearest mean and the linear discriminant classifiers, Pattern Recognition, 41, 2008,
3010-3020.
pdf
Kuncheva L.I., J.J. Charles, N. Miles, A. Collins, B. Wells and I.S. Lim, Automated
kerogen classification in microscope images of dispersed kerogen preparation,
Mathematical Geosciences, 40, 2008, 639-652.
pdf
Kuncheva L.I. and Z.S.J. Hoare, Error-dependency relationships for the Naive Bayes
classifier with binary features, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 30 (4), 2008, 735-740.
pdf
Charles J.J., L.I. Kuncheva, B. Wells and I.S. Lim, Background segmentation in
microscope images, Proc 3rd International Conference on Computer Vision Theory
and Applications VISAPP08, Madeira, Portugal, 2008.
pdf
Charles J.J, L.I. Kuncheva, B. Wells and I.S. Lim, Object segmentation within
microscope images of palynofacies, Computers & Geosciences, 34, 2008, 688-698.
pdf
Kuncheva L.I. Fuzzy classifiers, Scholarpedia, 3(1):2925.
article
2007
Rodriguez J.J and L.I. Kuncheva, Time series classification: Decision forests
and SVM on interval and DTW features, Proc Workshop no Time Series Classification,
13th International Conference on Knowledge Discovery and Data mining, San Jose,
CA, 2007. pdf
*** Winner of the 13th KDD Challenge on Time Series Classification
Kuncheva L.I. and J.J. Rodriguez, Classifier ensembles with a random linear oracle,
IEEE Transactions on Knowledge and Data Engineering, 19 (4), 2007, 500-508.
pdf
Kuncheva L.I., V. del Rio Villas and J.J. Rodriguez, Diagnosing scrapie in sheep:
A classification experiment, Computers in Biology and Medicine,37 (8), 2007, 1194-1202.
Kuncheva L.I and J.J. Rodriguez, An experimental study on Rotation Forest ensembles,
Proc 7th International Workshop on Multiple Classifier Systems, MCS'07, Prague,
Czech Republic, 2007, LNCS 4472, 459-468.
pdf
Rodriguez J.J and L. I. Kuncheva, Naive Bayes ensembles with a random oracle,
Proc 7th International Workshop on Multiple Classifier Systems, MCS'07, Prague,
Czech Republic, 2007, LNCS 4472, 450-458.
pdf
Hadjitodorov S. T. and L. I. Kuncheva, Selecting diversifying heuristics for
cluster ensembles, Proc 7th International Workshop on Multiple Classifier Systems,
MCS'07, Prague, Czech Republic, 2007, LNCS 4472, 200-209.
pdf
Sanchez J. S. and L.I. Kuncheva, Data reduction using classifier ensembles,
Proc. 11th European Symposium on Artificial Neural Networks,
Bruges, Belgium, 2007.
pdf
Kuncheva L.I, A stability index for feature selection, Proc. IASTED,
Artificial Intelligence and Applications, Innsbruck, Austria, 2007, 390-395.
pdf
[bib]
Narasimhamurthy A., L.I. Kuncheva, A framework for generating data to
simulate changing environments, Proc. IASTED, Artificial Intelligence
and Applications, Innsbruck, Austria, 2007, 384-389.
pdf
[bib]
[code]
[code (GitHub)]
2006
Charles J.J, L.I. Kuncheva, B. Wells, I.S. Lim, An evaluation measure
of image segmentation based on object centres, Proc. International
Conference on Image Analysis and Recognition ICIAR, 2006, Portugal,
LNCS 4141, 283-294.
pdf
Kuncheva L.I., D.P. Vetrov, Evaluation of stability of k-means
cluster ensembles with respect to random initialization, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 28 (11),
2006, 1798-1808.
pdf
Kuncheva L.I., S.T. Hadjitodorov, L.P. Todorova, Experimental
comparison of cluster ensemble methods, Proc FUSION 2006, Florence, Italy,
2006.
pdf
Rodriguez J.J, L.I. Kuncheva, C.J. Alonso, Rotation Forest:
A new classifier ensemble method, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 28 (10), 2006, 1619-1630.
pdf
[bib]
Kuncheva L.I., On the optimality of Naive Bayes with dependent
binary features, Pattern Recognition Letters, 27, 2006, 830-837.
pdf
Hadjitodorov S.T., L. I. Kuncheva, L. P. Todorova, Moderate
diversity for better cluster ensembles, Information Fusion, 7 (3),
2006, 264-275.
pdf
Vilarino F., L.I. Kuncheva, P. Radeva, ROC curves and video analysis
optimization in intestinal capsule endoscopy, Pattern Recognition
Letters, 27, 2006, 875-881.
pdf
Kuncheva L.I., S.T. Hadjitodorov, Diversifying Heuristics for Cluster
Ensembles, Technical Report, December 2006.
pdf
2005
Masip D., L.I. Kuncheva, J. Vitria, An ensemble-based method for
linear feature extraction for two-class problems, Pattern Analysis
and Applications, 8, 2005, 227-237.
pdf
Kuncheva L.I., C.J. Whitaker, Pattern Recognition, Encyclopedia of
Statistics in Behavioral Science, Wiley, Chichester, 2005, 3,
1532-1535.
pdf
Kuncheva L.I., Z.S.J. Hoare, P.D. Cockcroft, Selection of independent
binary features using probabilities: An example from veterinary
medicine, Journal of Modern Applied Statistical Methods, 4 (2),
2005, 528-537.
pdf
Kuncheva L.I., Using diversity measures for generating error-correcting
output codes in classifier ensembles, Pattern Recognition Letters,
26, 2005, 83-90.
pdf
Kuncheva L.I. Diversity in multiple classifier systems (Editorial),
Information Fusion, 6 (1), 2005, 3-4.
pdf
(Special issue on Diversity in Multiple Classifier Systems)
2004
Kuncheva L.I. Combining Pattern Classifiers. Methods and Algorithms, Wiley, 2004.
Kuncheva L.I., S.T. Hadjitodorov, Using diversity in cluster ensembles, Proc. IEEE
International Conference on Systems, Man and Cybernetics, The Hague, The Netherlands,
2004, 1214-1219.
pdf
Kuncheva L.I., Classifier ensembles for changing environments, Proceedings
5th International Workshop on Multiple Classifier Systems, MCS2004, Cagliari,
Italy, in F. Roli, J. Kittler and T. Windeatt (Eds.), Lecture Notes in Computer
Science, Vol 3077, 2004, 1-15.
pdf
[bib]
Whitaker C.J., L.I. Kuncheva, P.D. Cockcroft, A logodds criterion for selection
of diagnostic tests, Proc IAPR International Workshop on Statistical Pattern
Recognition, Lisbon, Portugal, 2004, 575-582.
pdf
Kuncheva L.I., P.D. Cockcroft, C.J. Whitaker, Z.S. Hoare,
Pre-selection of independent binary features:
An application to diagnosing scrapie in sheep, Proceedings of 20th
Conference on Uncertainty in Artificial Intelligence, Banff,
Canada, 2004, 325-332.
pdf
2003
Kuncheva L.I. Fuzzy vs Non-fuzzy in combining classifiers designed by boosting,
IEEE Transactions on Fuzzy Systems, 11 (6), 2003, 729-741.
pdf
*** Won the best paper award for 2006 in IEEE Transactions on Fuzzy Systems.
Kuncheva L.I., C.J. Whitaker, C.A. Shipp, R.P.W. Duin. Limits on the majority
vote accuracy in classifier fusion, Pattern Analysis and Applications, 6, 2003, 22-31.
pdf
Kuncheva L.I., C.J. Whitaker. Measures of diversity in classifier ensembles
and their relationship with the ensemble accuracy,
Machine Learning, 51, 2003, 181-207.
pdf[bib]
Kuncheva L.I.. That elusive diversity in classifier ensembles, Proc IbPRIA 2003,
Mallorca, Spain, 2003, Lecture Notes in Computer Science, Springer-Verlag,
LNCS 2652, 1126-1138.
pdf
Kuncheva L.I. Error bounds for aggressive and conservative AdaBoost,
Proc MCS 2003, Guilford, UK, Lecture Notes in Computer Science,
Springer-Verlag, LNCS 2709, 25-34.
pdf
Whitaker C.J., L.I. Kuncheva, Examining the relationship between
majority vote accuracy and diversity in bagging and boosting,
Technical Report, 2003, School of Informatics, University of Wales, Bangor.
pdf
Grant A., D. Last, L. Kuncheva, N. Ward, Marine DGNSS
availability and continuity, The Journal of Navigation,
56, 2003, 353-369.
pdf
2002
Kuncheva L.I., M. Skurichina, R.P.W. Duin. An experimental study on
diversity for bagging and boosting with linear classifiers,
Information Fusion, 3 (2), 2002, 245-258.
pdf
Shipp C.A. and L.I. Kuncheva. Relationships between combination methods
and measures of diversity in combining classifiers, Information Fusion,
3 (2), 2002, 135-148.
pdf
Kuncheva L.I. Switching between selection and fusion in combining
classifiers: An experiment, IEEE Transactions on SMC, Part B,
32 (2), 2002, 146-156.
pdf
*** Won the Sage best Transaction paper award for 2003 across IEEE
Transactions on SMC A, B and C.
Kuncheva L.I., R.K. Kountchev. Generating classifier outputs
of fixed accuracy and diversity, Pattern Recognition Letters,
23, 2002, 593-600.
pdf
Kuncheva L.I. A theoretical study on six classifier fusion strategies,
IEEE Transactions on PAMI, 24, (2), 2002, 281-286.
pdf
Shipp C.A. and L.I. Kuncheva. An investigation into how AdaBoost
affects classifier diversity, Proc. IPMU 2002, Annecy, France,
2002, 203-208.
pdf
Kuncheva L.I. and C.J. Whitaker. Using diversity with three
variants of boosting: aggressive, conservative and inverse,
Proc. MCS 2002, Cagliari, Italy, Lecture Notes in Computer
Science, Springer-Verlag, 2364, 81-90.
pdf
Skurichina M., L.I. Kuncheva and R.P.W. Duin. Bagging and
Boosting for the nearest mean classifier: Effects of sample
size on diversity and accuracy, Proc. MCS 2002, Cagliari,
Italy, Lecture Notes in Computer Science, Springer-Verlag,
2364, 62-71.
2001
Kuncheva L.I., J. Wrench, L.C. Jain, and A. Al-Zaidan.
A fuzzy model of heavy metal loadings in marine environment,
in: Da Ruan, J. Kacprzyk and M. Fedrizzi (Eds.) Soft Computing
for Risk Assessment and Management, Springer-Verlag group
(Physica-Verlag, Heidelberg and New York), series Studies
in Fuzziness and Soft Computing, 2001, 355-371.
pdf
Kuncheva L.I. Combining classifiers: Soft computing solutions,
in: S.K. Pal and A. Pal (Eds.) Pattern Recognition:
From Classical to Modern Approaches, World Scientific
Publishing Co., Singapore, 2001, 427-452.
pdf
Bezdek J.C., L.I. Kuncheva. Nearest prototype classifier designs:
An experimental study, International Journal of Intelligent
Systems, 16 (12), 2001, 1445-1473.
pdf
Kuncheva L.I. Using measures of similarity and inclusion
for multiple classifier fusion by decision templates,
Fuzzy Sets and Systems, 122, (3), 2001, 401-407.
pdf
Kuncheva L.I., J.C. Bezdek and R.P.W. Duin. Decision
templates for multiple classifier fusion, Pattern Recognition,
34 (2), 2001, 299-314.
pdf
Kuncheva L.I. Fuzzy vs Non-fuzzy in combining classifiers:
an experimental study, Proc LFA'01, Mons, Belgium, 2001, 11-22.
Kuncheva L.I., F. Roli, G.L. Marcialis, C.A. Shipp, Complexity of
data subsets generated by the random subspace method: An experimental
investigation, MCS 2001, Cambridge, Lecture Notes in Computer
Science, LNCS 2096, 349-358.
pdf
Kuncheva L.I., C.J. Whitaker, Feature subsets for classifier
combination: An enumerative experiment, MCS 2001,
Cambridge, Lecture Notes in Computer Science, LNCS 2096 228-237.
pdf
Shipp C.A., L.I. Kuncheva, Four measures of data complexity for
bootstrapping, splitting and feature sampling, Proc. CIMA 2001,
Bangor, June, 2001, 429-435.
pdf
Al-Zaidan A.S., L.I. Kuncheva, Using fuzzy similarities to analyze
heavy metal distribution in a marine environment,
Proc. CIMA 2001, Bangor, June, 2001, 725-731.
pdf
Kuncheva L.I., C.J. Whitaker, Ten measures of diversity in classifier
ensembles: Limits for two classifiers, IEE Workshop on Intelligent
Sensor Processing, Birmingham, February, 2001, 10/1-10/6.
pdf
2000
Kuncheva L.I, Fuzzy Classifier Design, Springer-Verlag, Heidelberg, May 2000.
Kuncheva L.I., How good are fuzzy if-then classifiers? IEEE Transactions on Systems,
Man, and Cybernetics, Part B: Cybernetics, 30 (4), 2000, 501-509.
pdf
Kuncheva L.I. and L.C. Jain, Designing classifier fusion systems by
genetic algorithms, IEEE Transactions on Evolutionary Computation, 4 (4),
2000, 327-336.
pdf
Kuncheva L.I., J. Wrench, L.C. Jain and A.S. Al-Zaidan, A fuzzy
model of heavy metal loadings in Liverpool bay, Environmental
Modelling and Software, 15 (2), 2000, 161-167.
pdf
Bezdek, J. C. and L.I. Kuncheva, Some notes on 21 nearest prototype
classifiers, Advances in Pattern Recognition, Lecture Notes in
Computer Science, 1876, eds. F. J. Ferri, J. M. Inesta,
A. Amin and P. Pudil, Springer, Berlin, 2000, 1-16.
pdf
Kuncheva L.I., C.J. Whitaker, C.A. Shipp and R.P.W. Duin.
Is independence good for combining classifiers?, Proc. 15th
International Conference on Pattern Recognition, Barcelona,
Spain, 2000, 2, 168-171.
pdf
Kuncheva L.I. Cluster-and-selection method for classifier
combination, Proc. 4th International Conference on
Knowledge-Based Intelligent Engineering Systems &
Allied Technologies (KES'2000), Brighton, UK, 2000,
185-188.
pdf
Al-Zaidan, A.S., and L.I. Kuncheva. Selecting fuzzy
connectives to represent heavy metal distribution in
Liverpool Bay, Proc. 4th International Conference on
Knowledge-Based Intelligent Engineering Systems &
Allied Technologies (KES'2000), Brighton, UK, 2000,
602-605.
pdf
1999
Kuncheva L.I. and L.C. Jain, Nearest neighbor classifier:
Simultaneous editing and feature selection,
Pattern Recognition Letters, 20, 1999, 1149-1156.
pdf
Bezdek J.C., J.M. Keller, R. Krishnapuram and L.I. Kuncheva,
N.R. Pal, Will the real Iris data please stand up?,
IEEE Transactions on Fuzzy Systems, 7(3), 1999, 368-369.
pdf
Kuncheva L.I. and J.C. Bezdek, Presupervised and postsupervised
prototype classifier design, IEEE Transactions on Neural
Networks, 10 (5), 1999, 1142-1152.
pdf
Kuncheva L.I. and F. Steimann, Fuzzy Diagnosis (Editorial),
Artificial Intelligence in Medicine, 16(2), 1999,
121-128.
pdf
(Special issue on Fuzzy Diagnosis)
...1998
Kuncheva L.I. and J.C. Bezdek, An integrated framework for
generalized nearest prototype classifier design,
International Journal of Uncertainty, Fuzziness and
Knowledge-based Systems, 6 (5), 1998, 437-457.
pdf
Kuncheva L.I., J.C. Bezdek. Nearest prototype classification:
Clustering, genetic algorithms or random search? IEEE
Transactions on Systems, Man, and Cybernetics, C28 (1),
1998, 160-164.
pdf
Kuncheva L.I., J.C. Bezdek and M.A. Sutton, On combining
multiple classifiers by fuzzy templates,
Proc NAFIPS'98, Pensacola, Florida, 1998, 193-197.
pdf
Kuncheva L.I. Fitness functions in editing k-NN reference
set by genetic algorithms, Pattern Recognition, 30, 1997,
1041-1049.
pdf
Kuncheva L.I. An Application of OWA Operators to the Aggregation
of Multiple Classification Decisions, in: Yager, R. & Kacprzyk,
J. (Eds.) The Ordered Weighted Averaging Operators, Springer US,
1997, 330-343.
pdf
[bib]
Kuncheva L.I. Initializing an RBF neural network by a
genetic algorithm, Neurocomputing, 14, 1997, 273-288.
pdf
Kuncheva L.I. On the equivalence between fuzzy and
statistical classifiers, International Journal of
Uncertainty, Fuzziness and Knowledge-based Systems,
4 (3), 1996, 245-253.
pdf
Kuncheva L. Editing for the k-nearest neighbors rule by a
genetic algorithm, Pattern Recognition Letters, Special
Issue on Genetic Algorithms, 16, 1995, 809-814.
pdf
Mitra S., L. Kuncheva. Improving classification performance
using fuzzy MLP and two-level selective partitioning of the
feature space, Fuzzy Sets and Systems, 70, 1995, 1-13.
pdf
Kuncheva L.I. On combining multiple classifiers, Proc. 7th
International Conference on Information Processing and
Management of Uncertainty (IPMU'98), Paris, France, 1998, 1890-1891.
pdf
Kuncheva L.I., J.C. Bezdek. Selection of cluster prototypes
from data by a genetic algorithm, Proc. 5th European
Congress on Intelligent Techniques and Soft Computing, EUFIT,
Aachen, Germany, 1997, 1683-1688.
pdf
Kuncheva L.I., R. Krishnapuram. A fuzzy consensus aggregation
operator, Fuzzy Sets and Systems, 79, 1996, 347-356.
pdf
Kuncheva L. I., K. T. Atanassov. An intuitionistic fuzzy RBF network,
Proc. 4th European Congress on Intelligent Techniques and Soft Computing,
EUFIT, Aachen, Germany, 1996, 777-781.
pdf
[bib]
Kuncheva L.I. Using degree of consensus in two-level fuzzy
pattern recognition, European Journal of Operational Research,
80, 1995, 365-370.
pdf
Kuncheva L.I., S. Mitra. A two-level classification scheme
trained by a fuzzy neural network, Proc. 12 International
Conference on Pattern Recognition, Jerusalem, Israel, 1994,
467-469.
pdf
Mitra S., L.I. Kuncheva, Change-glasses pattern classification
with a fuzzy neural network, Proc 2nd International Conference on
FUzzy Based Expert SysTems, FUBEST, Sofia, Bulgaria, 1994, 29-32.
pdf
Kuncheva, L. I. Genetic algorithm for feature selection for
parallel classifiers, Information Processing Letters, 46, 1993,
163-168.
pdf
Kuncheva, L. I. Fuzzy rough sets: application to feature selection,
Fuzzy Sets and Systems, 51, 1992, 147-153.
pdf